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Abstract
Wavelength-selective thermal emitters (WS-TEs) have been frequently designed to achieve desired target emissivity
spectra, as a typical emissivity engineering, for broad applications such as thermal camouflage, radiative cooling, and
gas sensing, etc. However, previous designs require prior knowledge of materials or structures for different applications
and the designed WS-TEs usually vary from applications to applications in terms of materials and structures, thus
lacking of a general design framework for emissivity engineering across different applications. Moreover, previous
designs fail to tackle the simultaneous design of both materials and structures, as they either fix materials to design
structures or fix structures to select suitable materials. Herein, we employ the deep Q-learning network algorithm, a
reinforcement learning method based on deep learning framework, to design multilayer WS-TEs. To demonstrate the
general validity, three WS-TEs are designed for various applications, including thermal camouflage, radiative cooling
and gas sensing, which are then fabricated and measured. The merits of the deep Q-learning algorithm include that it
can (1) offer a general design framework for WS-TEs beyond one-dimensional multilayer structures; (2) autonomously
select suitable materials from a self-built material library and (3) autonomously optimize structural parameters for the
target emissivity spectra. The present framework is demonstrated to be feasible and efficient in designing WS-TEs
across different applications, and the design parameters are highly scalable in materials, structures, dimensions, and
the target functions, offering a general framework for emissivity engineering and paving the way for efficient design of
nonlinear optimization problems beyond thermal metamaterials.

Introduction
All objects in nature emit thermal radiation outwardly

at anytime and anywhere in a broadband, non-selective,
incoherent, diffusive, and reciprocal manner1,2. Thanks to
the fast development of thermal metamaterials and
metasurfaces in recent years, thermal radiation has been
demonstrated to be engineered with comprehensive
control of spectral, directional, and dynamic character-
istics, enabling higher-efficiency radiative heat transfer

than the thermal radiation of natural objects3. Among
them, spectral emissivity engineering of thermal radiation
enables more applications, such as energy harvesting4,
thermal management5,6, radiative cooling7,8, thermal
camouflage9,10, infrared (IR) sensing11, far-/near-field
radiation control12, thermophotovoltaics13, thermo-
graphy14,15, heat-assisted magnetic recording16, etc. The
emissivity engineering aims to select materials and design
nanostructures to achieve specific functionalities with a
target emissivity spectrum. The common physics of
selective emissivity comes from the excitation of different
photon modes, which leads to the local enhancement or
suppression of the internal electric field, thus allowing for
control over the radiation emission at different wave-
lengths17. Wavelength-selective thermal emitters (WS-
TEs), as the main output of emissivity engineering, can be
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achieved by multilayers18, photonic crystals, nano-
grating19, nano antennas arrays20, multiple-quantum-
well21, Fabry-Perot cavities22, hallow cavities23, etc. As
one of the simplest structures of WS-TEs, one-
dimensional multilayers are frequently employed which
are composed of alternating layers of materials with dif-
ferent refractive indices, allowing or blocking the propa-
gation of light of specific wavelength in it, and together
with absorption of lossy medium, so as to achieve the
regulation of emissivity24. The diversity of materials and
the large parameter space of multilayer structures provide
significant flexibility in tuning emissivity. Additionally,
they are relatively easy to fabricate using thin film
deposition at a low cost, which makes them promising for
large-scale manufacturing. More importantly, the emis-
sivity spectra of the multilayers can be efficiently simu-
lated using the transfer matrix method (TMM), which is
easily combined with various optimization algorithms.
Therefore, multilayers are frequently designed as typical
WS-TEs and are widely applied for extensive applications
in thermal camouflage (TC)25,26, radiative cooling
(RC)27–29, gas sensing (GS)30–32, etc.
In general, different applications require distinct emis-

sivity spectra, as illustrated in Fig. 1. For instance, TC
necessitates low emissivity within the long-wavelength IR
range (8–13 μm) to prevent detection by most IR detec-
tors when the background temperature is low, where the

long-wavelength IR range is called as atmosphere window
(AW) due to its high transmittance. Additionally, it is
advantageous for the emissivity outside the AW to remain
as high as possible to facilitate further radiative heat dis-
sipation33. To achieve TC, Peng et al. designed a silver/
germanium (Ag/Ge) multilayered structure, where impe-
dance matching is utilized to manipulate the radiation
characteristics34. Zhu et al. designed a Ge/ZnS multilayer
on a silica aerogel substrate with efficient radiative cooling
capability for TC in high ambient temperatures35. In
contrast, RC aims to achieve passive cooling by radiating
the heat directly to the outer space at ~3 K via the high
emissivity within the AW. In addition, a high reflectivity
in the solar band is necessarily required to reflect as much
solar energy as possible to maximize the cooling power,
ultimately achieving net energy outflow and reducing
object temperature36. Raman et al. adopted needle opti-
mization method to design a seven-layer HfO2/SiO2

emitter. The fabricated multilayer emitter achieved day-
time RC under direct solar irradiance for the first time,
which reflected 97% of solar irradiance and cooled to
4.9 °C below the ambient temperature37. Similarly, Ma
et al. optimized seven-layer SiO2/Si3N4 emitter using an
evolutionary algorithm, and the emitter was highly
reflective towards solar radiation and had a broadband
high emissivity within the AW38. Different from the
broadband emissivity spectra for RC and TC, the
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Fig. 1 Emissivity engineering of multilayer WS-TEs designed and optimized by Deep Q-learning network (DQN) for radiative cooling, thermal
camouflage, and gas sensing, respectively. The schematic for the emissivity requirement for different applications are included. The basic elements
for the DQN network are also illustrated
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emissivity spectrum for GS needs narrow-band peaks
which match the absorption peaks of the detected gas.
Sakurai et al.39 and Xi et al.31 both utilized machine-
learning to design and optimize multilayered structures
and achieved ultra-narrowband emission peaks at multi-
ple wavelengths. In particular, Xi et al. obtained the whole
database of multilayered WS-TEs for narrowband emis-
sivity spectra in the wavelength range of 3 to 10 μm, and
the highest q-factor reaches 508 far beyond the q-factor
record in the literature.
As far as we are concerned from the literature, although

many combinations of materials of multilayer WS-TEs
have been proposed to regulate emissivity, both material
selection and structural design still rely on physics-
inspired methods and past design experience or guide-
lines, which are inefficient and difficult to achieve optimal
structural design. To further improve the performance of
multilayer WS-TEs, machine-learning optimization algo-
rithms have shown unique advantages in structure opti-
mization and designing problems31,40. However, designers
still have to conduct extensive searches in existing work to
determine suitable materials and initial structural para-
meters for their design goals before optimization. Con-
sequently, researchers, following their prior knowledge of
materials or structures for different applications, either fix
materials to design structures11,39,41 or fix structures to
optimize material arrangement13,42 to reduce the opti-
mization space and improve the design efficiency. Hence,
one open question comes that can we offer a general
framework for designing WS-TEs for different applica-
tions without a prior knowledge of materials and struc-
tures? If so, we can just change the target emissivity
spectra and the WS-TEs will be output directly with
matching emissivity spectra to the target one.
Recently, deep learning has attracted increasing atten-

tion in various domains, such as natural language pro-
cessing, computer vision, image processing, speech
recognition and material structure optimization43.
Through establishing the artificial neural network and
data-driven method, deep learning obtains the mapping
relationship between data pairs, that is, from emissivity
spectra to design parameters of the emitters. However,
challenges such as the one-to-many mapping problem,
analysis from complex spectra to design parameters, along
with the dataset acquisition, collectively render most
neural network models inefficient for addressing the
emitter design within an enormous optimization space
that concurrently encompasses material selection and
structural optimization simultaneously. Fortunately, deep
reinforcement learning (DRL), which combines deep
learning and reinforcement learning, promises to address
the above challenges. It does not directly parse the map-
ping relationship between data pairs from the pre-
collected dataset, but constantly interacts with the

current environment to make decisions to update the
state of the environment, and uses historical experience as
the dataset to learn and optimize the deployment of
decisions, so as to maximize the accumulated reward
value44. Consequently, it has been proven to be capable of
solving large-scale and complicated tasks, such as Go and
Chess45. Wang et al. proposed a sequence generation
network based on DRL for the design of optical multilayer
films46. However, due to the design parameters being
generated from the same network, their diversity is lim-
ited. In addition, other DRL based design frameworks still
face serious challenges in terms of design efficiency47.
In this study, we propose a general design framework

based on deep Q-learning network (DQN) for the design
and optimization of WS-TEs in emissivity engineering
without a prior knowledge of materials and structures.
This framework demonstrates high accuracy and effi-
ciency as well as flexibility and scalability in design
parameters and applications. Three multilayer WS-TEs
for three applications including TC, RC, and GS, are
designed and optimized by the framework, which are then
experimentally fabricated and measured, matching with
the designed emissivity spectra. The selection of materials
and the design of the structure are independently com-
pleted by DQN within the extensive optimization space.
The designed multilayer WS-TEs all exhibit exceptional
performance in these three applications, validating DQN
as a general deep learning framework for emissivity
engineering.

Results
Construction of DQN framework for WS-TEs design and
optimization
The roadmap of optimization process of DQN is illu-

strated in Fig. 2. The whole optimization process can be
described as an interactive process with the environment.
The state of the environment, which consists of the
material ID number and the thicknesses of each layer,
represents the materials and structural parameters of the
current multilayer. Here, we set up the multilayer WS-
TEs as a 5-layer structure composed of alternating two
materials. Considering that this specific structural con-
figuration has been implemented for various applications
in emissivity engineering41,48. Naturally, the setting of
design parameters is flexible and can be adjusted
according to design objectives, including the kinds of
materials, layer count, and other structural parameters
(For more details, see Supplementary Information Note
3). It is worth mentioning that, while increasing the
number of layers and materials may meet more rigorous
emissivity spectrum requirements, it also significantly
expands the optimization space by several orders of
magnitude, requiring greater computing power and
longer design time. Consequently, according to the
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structural configuration set above, the state can be
represented by a 1×7 vector containing material and
structure information. The two materials are selected
from the self-built material library, as shown in Table 1,
which contains 8 commonly used materials for emissivity
engineering. These candidate materials cover most optical
properties. Their optical properties (refractive index) are
referred to E. Palik’s and Querry’s books49,50 and other
research work51,52 (See Supplementary Information S1).
Regarding the substrate material, it needs to be selected
according to specific design goals, we chose silver for RC,
silica for TC, and tungsten for GS. Each layer thickness is
varied within the range of 20–1000 nm with a uniform
step size of 20 nm, which results in a total of 50 possible
steps for each layer. Considering the 8 available materials,
this structural configuration leads to
8 × 7 × 505= 1.75 × 1010 potential candidate structures.
The demand of simultaneous material selection and
structure optimization, together with the sheer volume of
optimization space, renders manual design impractical
and presents significant challenges to conventional
machine learning methods.
After the physical information of the multilayer struc-

ture is encoded into digital information, it is inputted into
an artificial neural network. The network, called ‘agent’ in
DQN, consists of an input layer, three fully connected
layers and an output layer. The number of neurons in the
three fully connected layers is 24, 48 and 24, respectively.
These layers perform computations on the input data,
extracting relevant features and learning patterns from
the encoded structural information. The output layer of

the agent is referred to as the “action” layer. It generates a
single value and each value corresponds to a policy that
can be applied to update the current state (structure).
More details about the actions and their corresponding
policies can be found in Table 2, which provides a map-
ping between the output values of the action layer and the
structural modifications they represent. Then TMM is
adopted to simulate the radiation characteristics of the
new state (new structure), and obtain its emissivity
according to Kirchhoff’s law. To evaluate the performance
of the new state, a reward R is obtained from the emis-
sivity spectra. The reward serves as feedback for the agent
and plays a crucial role in determining the convergence
direction of the DQN model. The specific definition of the
reward will depend on the desired application or
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Fig. 2 Schematic for the multilayer structure and DQN framework. a Five-layer multilayer structure composed of two alternating materials.
b Schematic of the DQN framework. The state consists of two materials and five thicknesses of the multilayer, then the state parameters are fed into
the DQN to generate an Action. Then take the action to update the state. TMM is adopted to simulate the new state, and reward is obtained to feed
back to neural network (agent). The new state is fed into the DQN for the next iteration. Each pair of state, action and reward is recorded as dataset to
train the neural network, so that it can take the action that increases accumulated reward and finally get the corresponding state with the
maximum reward

Table 1 Material library of multilayer WS-TEs for TC, RC,
and GS

Material ID Material

1 Ge

2 ZnSe

3 Si

4 SiO2

5 TiO2

6 ZnS

7 Si3N4

8 MgF2
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emissivity target, and further details regarding the reward
for TC, RC, and GS will be provided later.
In the DQN, a Q-function Q (s, a) is defined to repre-

sent the expected cumulative reward for taking the action
a on state s and following the optimal policy thereafter.
The agent is trained to approximate the Q-function to
make the best choice of action to achieve higher reward
by utilizing the replay buffer, which stores historical
experiences (state, action, reward, and next state) during
the interaction with the environment. To enhance the
stability of training process, the dual network structure is
utilized, where the main network (agent) is used to collect
experiences and the target network, a copy of agent, is
used to calculate the target Q-value based on Bellman
equation as follows53:

yt ¼ rt þ γ � Qðstþ1; a
�;w�Þ ð1Þ

where rt is the reward, γ is the discount factor, a� ¼
argmaxaQðstþ1; a; wÞ represents the action selected by the
main network that maximizes the Q-value. w- and w are
the weights of the target network and the main network,
respectively. The update of the network parameters is
achieved by the back-propagation algorithm to minimize
the loss function, which is the mean squared error
between the predicted Q-value and the target Q-value, as
follow:

loss ¼ MSE½yt � Qðs; a;wÞ� ð2Þ

In addition, Epsilon Greedy Exploration (EGE) algo-
rithm is employed to balance exploration and

exploitation. Initially, DQN tends to generate action
randomly, but gradually, as epsilon decreases, it relies on
the Q-function for decision making. Finally, it is crucial to
design an appropriate initialization method for the state to
make DQN capable for multilayer optimization with high
efficiency. Here we randomly initialize two materials of
the state from the material library, with the thickness of
each layer randomly generated with the range described
above. Additionally, we introduce an iteration threshold,
which servers to evaluate whether the iteration should
continue. When the reward R of a state exceeds the
iteration threshold, the state with the highest historical
reward is chosen as the initial structure for the next
iteration. For each iteration, DQN continues to accept the
state, take the action, simulate the emissivity spectra,
feedback and then accept the next state. Once the reward
of a new state falls below the iteration threshold, the
structure will be reinitialized for the next iteration. It is
important to note that the ‘train from buffer’ mechanism
results in the number of simulations or the number of
calculated structures are not equal to the number of
iterations. In simple terms, the design and optimization
process of DQN can be likened to playing a game. The
game will continue until the mission fails, at which point
it needs to be initialized and restarted. An ingenious
initialization method can help achieve higher scores
efficiently.
In order to showcase the generality and effectiveness of

the DQN algorithm, we design multilayer WS-TEs in the
following for three applications in emissivity engineering,
including TC, RC, and GS, respectively, under the same
optimization framework and utilizing a common material
library.

Design and optimization of WS-TE for TC
As mentioned earlier, the reward function needs to be

meticulously defined to ensure that the optimization
progress in the desired direction. So firstly, for TC, since
an ideal TC emitter requires low emissivity inside AW
(8–13 μm) but high emissivity outside, we therefore define
the reward R as the difference between the average
emissivity inside and outside the AW, which can be cal-
culated as:

R ¼
R 8
5εðλÞIBBðλ;TÞdλþ

R 20
13εðλÞIBBðλ;TÞdλR 8

5IBBðλ;TÞdλþ
R 20
13IBBðλ;TÞdλ

�
R 13
8 εðλÞIBBðλ;TÞdλ
R 13
8 IBBðλ;TÞdλ

ð3Þ

where IBB ¼ hc2=λ5 � ½expðhc=λkBTÞ � 1��1 is the spectral
radiance of a blackbody at wavelength λ and temperature
T. h and kB are the Planck’s constant and Boltzmann
constant, respectively and c is the speed of light. εðλÞ is the

Table 2 Definitions of actions used in DQN

Action No. Action Definition

0 Decrease the material ID of Material I by 1 (min 1)

1 Increase the material ID of Material I by 1 (max 8)

2 Decrease the material ID of Material II by 1 (min 1)

3 Increase the material ID of Material II by 1 (max 8)

4 Decrease the Thickness I by 20 (min 20)

5 Increase the Thickness I by 20 (max 1000)

6 Decrease the Thickness II by 20 (min 20)

7 Increase the Thickness II by 20 (max 1000)

8 Decrease the Thickness III by 20 (min 20)

9 Increase the Thickness III by 20 (max 1000)

10 Decrease the Thickness IV by 20 (min 20)

11 Increase the Thickness IV by 20 (max 1000)

12 Decrease the Thickness V by 20 (min 20)

13 Increase the Thickness V by 20 (max 1000)
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emissivity spectrum of the designed TC emitter. The
temperature here is set to 350 K, which is slightly higher
than the average surface temperature of armored vehicles
in the military. The reward R yields a value between 0 and
1 based on Eq. (3). By pre-trial, the iteration threshold is
set as 0.2. In addition, the rewards R less than 0.2 are
mandatorily modified to −0.2, which signals to the agent
that the states corresponding to the negative rewards do
not meet the design requirements. The initialization
method may introduce randomness to the optimization
results or lead the optimization to a local optimal
solution. To mitigate the above impact, the optimization
process is run 5 times to obtain the optimal TC emitter
structure. Each run consists of 1000 iterations, which is
sufficient to reduce epsilon in the Epsilon Greedy
algorithm to its minimum value. This ensures that the
agent dominates the selection of actions. Once the
optimization is completed, the optimal structure is
experimentally fabricated using magnetron sputtering to
demonstrate the feasibility of the structural optimization.

The schematic of resulting optimal structure and cor-
responding scanning electron microscopy (SEM) image of
fabricated multilayer are shown in Fig. 3a. It can be seen
that DQN finally choose ZnS and Ge as the materials for
the TC emitter. The thicknesses of each layer, including
the values designed and those obtained from the SEM
image of the fabricated sample, are presented in Fig. 3a. It
is evident that the layer thicknesses in the optimal TC
emitter are irregular and aperiodic, which is difficult to
design accurately for manual optimization. However, due
to the manufacturing precision, there are certain devia-
tions between the thicknesses of fabricated sample and
the designed values, resulting in the discrepancy of their
corresponding emissivity spectra as depicted in Fig. 3b. In
addition, the differences between the optical properties of
the sputtered materials used for fabrication and the input
parameters used in the numerical simulation also make a
certain impact. Nevertheless, both the designed and fab-
ricated structures exhibit low emissivity within the AW
and high emissivity outside the window. The calculated
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average normal emissivity in AW of simulation is 0.18,
while 0.79 is obtained outside the AM, resulting in the
reward value of 0.61. The excellent camouflage effect is
attributed to low thermal emission in the AW (IR camera
detected band) and high emission outside AW for further
radiative cooling. For further verification, the normalized
electric field intensities of the optimal structure at
6.65 μm and 8.93 μm are plotted in Fig. 3c. The intensity
of the electric field at 8.93 μm is degraded heavily, which
means a forbidden band is formed in AW resulting in low
absorption (and therefore low emissivity) in this band.
While the intensity outside AW remains relatively
unchanged, resulting in high emissivity for the structure
with the lossy SiO2 substrate. The emissivity of the opti-
mal structure as a function of incident angle and wave-
length is shown in Fig. 3d, indicating the angular
independence of the excellent performance.
In order to demonstrate the efficiency of the optimi-

zation under the framework of DQN algorithm, we
quantitatively analyze the reward R as a function of the

percentage of the number of calculated structures. As
shown in Fig. 4a, DQN only calculated less than 0.2% of
all the calculated structures to obtain 70% and 90% of
the maximum reward and calculated only 4.428% of the
structures to find the optimal structure for TC. It can be
obviously seen that, with the progress of optimization
iterations, the emissivity within the AW decreases
continuously, while the emissivity outside the window
gradually increases, aiming to achieve a better camou-
flage effect. In addition, the material combinations of
structures achieving 70% and 90% of the maximum
reward are the same as the optimal structure, as shown
in Fig. S2, which indicates that DQN is capable of
selecting appropriate materials at a rapid pace and then
performs subsequent structural optimization. The
parametric distribution curves of each layer thickness
are presented in Fig. 4b, which indicate that the optimal
layer thicknesses are derived from the peak of the
curves. To further confirm the optimality of the struc-
ture obtained, we perform Bayesian optimization (BO)
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on the multilayer WS-TEs for TC under the fixed
material combination, namely ZnS and Ge. Figure 4c
illustrates the reward histories, showing that the max-
imum reward and corresponding structure by BO are
consistent with those obtained using DQN. However,
the proposed framework based on DQN still demon-
strates higher efficiency while optimizing both materials
and structure. Further details on BO for TC emitter are
available in Supplementary Information Note 1.

Design and optimization of WS-TE for RC
For designing a RC emitter, the objective is to maximize

the emissivity within the AW, while minimizing it in the
solar band so as to achieve maximum net energy power
outflow. The net energy power, also called cooling power,
can be denoted by

PcoolingðTÞ ¼ PradðTÞ � PatmðT ambÞ � PsunðθÞ � Pcondþconv

ð4Þ
where Prad is the output power from the RC emitter, Patm

is the input power from the atmosphere radiation, Psun is
the input power from the sun and Pcondþconv describes the
heat exchange between the RC emitter and the environ-
ment by conduction and convection. T and Tamb are the
temperature of RC emitter and ambient, respectively. θ is
the angle of solar radiation. A more detailed calculation
method of each power is provided in the Supplementary
Information Note 2. In the following calculation, the
conjugate heat transfer coefficient in Pcondþconv is set as
hc ¼ 5W �m�2 � K�1 and the ambient temperature is kept
at Tamb ¼ 25 �C to simulate a breeze situation. Obviously,
the greater the cooling power, the better the performance
of the designed RC emitter. However, it seems not
intuitive to use cooling power as reward, and it is difficult
to set a suitable iteration threshold. Therefore, the reward
R is set as the difference between the steady-state
temperature (Tsteady) of the RC emitter and the ambient
temperature, namely the temperature drop below the
Tamb. If the Pcooling is positive at the initial temperature
T init (T init=T amb), the RC emitter starts to be cooled
down. As the temperature of cooler decreases, the cooling
power Pcool also reduces until PcoolingðT steadyÞ ¼ 0. At that
time, the RC emitter reaches an equilibrium state and the
Tsteady can be obtained from the Eq. (4)27. Previous studies
have shown that the temperature difference (ΔT ¼
T amb � T steady) can reach 8 °C or even higher8,36, so the
iteration threshold is set as 5 °C. Similar to the previous
design for TC, the rewards R less than 5 will be
mandatorily modified to −5. The optimization is also
implemented for 5 times with 1000 iterations each.
The design and optimization results of the RC emitter

are presented in Fig. 5a. SiO2 and TiO2 are finally
chosen as the materials for the optimal RC structure.

The layer thicknesses of the optimal RC emitter also
exhibit irregular and aperiodic. The emissivity spectra of
the designed and the fabricated structures are shown in
Fig. 5b. It can be seen that the designed RC emitter
exhibits near zero emissivity in solar spectrum band,
allowing it to reflect the incident solar radiation energy.
In contrast, a high emissivity is obtained within the AW,
enabling it radiates heat efficiently to outer space. Due
to the differences between the thickness of the fabri-
cated sample and the designed values, their emissivity
spectra are not completely consistent. The reward R of
the optimal RC emitter is 16.99, which means it can
maintain 16.99 °C below the ambient temperature at
thermal equilibrium in theory. The cooling power at the
initial temperature is 132.40W/m2. The equilibrium
temperature difference and cooling power both exhibit
the excellent performance of the designed RC emitter.
The normalized electric field intensities of the optimal
structure in the visible wavelength band and AW are
illustrated in Fig. 5c, indicating the strong reflection of
the Ag substrate and the high emissivity resulting from
the electric field enhancement, respectively. Further-
more, the angular independence of emissivity spectra
can also be observed within an angle of less than 80°, as
shown in Fig. 5d.
The optimization process is quantitatively shown in

Fig. 6a. In the early stage of optimization, the reward R
increases sharply, which means that DQN can quickly
identify suitable materials for the RC emitter and per-
form optimization under this material combination until
the optimization process tends to be smooth (as shown
in Fig. S3). The material combination of the structure
yielding 50% of maximum reward is Si/SiO2, which
indicates that DQN replaces Si with TiO2 to achieve
better cooling performance, as shown in Fig. S3a. Dur-
ing the smooth optimization period, the thickness of
each layer is continuously optimized to further enhance
the radiative cooling performance. When calculating
less than 2% of the candidate structures, the RC emitter
could reach a temperature drop of 14.94 °C below the
ambient temperature in a steady state. After 1000
iterations, only 6.31% of structures need to be calculated
to find the structure for the RC emitter with the max-
imum reward. To further exhibit the details of the
optimization, the parametric distribution curves of each
layer thickness are shown in Fig. 6b. In addition, except
for the material combination of the optimal RC emitter,
other material combinations are shown in Fig. 6c. It can
be seen that SiO2 and Si3N4 also exhibit potential as the
materials of RC emitter, in addition to TiO2 and SiO2.
The occurrence of less frequent material combinations
can be explained by the random initialization of the
DQN and the random selection of the EGE algorithm
used in DQN.
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Design and optimization of WS-TE for GS
In the final part of this work, we adopt DQN to tackle a

more rigorous task, that is, to achieve peak emissivity at a
fixed wavelength for GS. More specifically, the target is to
obtain a narrow-band emission peak with a high emis-
sivity at the wavelength of absorption peak of the detected
gas, while the emissivity at other wavelengths is zero to
eliminate the impact of absorption by other gases. Here,
we take carbon dioxide (CO2) as the target gas, which has
an absorption peak at 4.26 μm. The reward is defined as
the product of the emissivity at 4.26 μm and the q-factor
of the narrow peak, as follows:

R ¼ εt ´ q ð5Þ
where q is used to ensure that a narrow-band emission
peak can be generated and εt is to ensure a high emissivity
at target wavelength, 4.26 μm. Maximize the product of
the two terms to optimize the resulting GS emitter with a
narrow-band emission peak that matches the carbon

dioxide absorption peak. By pre-train, the iteration
threshold is set to 2. The optimization was run 5 times
with 1000 iterations each to obtain the optimal structure
while eliminating randomness.
As shown in Fig. 7a, the Si and SiO2 are chosen as the

materials of GS emitter by DQN. The emissivity spectra
of the optimized structure are shown in Fig. 7b. The
simulation result shows that a sharp and high emissivity
peak can be realized with the optimized structures at
4.26 μm, and the emissivity outside the narrow-band is
close to zero. The corresponding emissivity of the peak is
0.9996, and the reward R of the structure is 60.62. The
result shows that the designed WS-TE is sufficient to be
an excellent CO2 sensor. Due to the thickness deviation
of the fabricated sample, the measured wavelength of the
emissivity peak deviates from the target wavelength but
still within the CO2 absorption peak. The emission peak
is located at 4.3 μm and the peak value is 0.905. Regret-
tably, the fabricated sample presents a certain low
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emission outside the absorption peak, which can be
attributed to the discrepancy in properties between the
sputtered and simulated materials. Figure 7c displays the
normalized electric field intensities of the optimal
structure at 4.26 μm and 5 μm. Due to the excitation of
the localized Tamm plasmon state, the electric field
intensity is significantly enhanced in a region 0.3 μm from
the top of the substrate, resulting in peak emissivity at
4.26 μm. However, there is no notable enhancement of
the intensity of electric field at 5 μm, resulting in near-
zero emissivity at this wavelength. The incident angle
related emissivity spectra are displayed in Fig. 7d. It can
be seen that the angular independence only occurs within
30°, but it does not have any effect on gas sensing since
the emitter typically faces the detected gas in the normal
direction.
The optimization process of the GS emitter is pre-

sented in Fig. 8a. In the early stage of optimization, the
emitter has only a small emissivity peak within the
research band and the wavelength of emissivity peak

deviates from 4.26 μm. As the iterations progress, suitable
material combinations and optimized structure para-
meters lead to an improved and more obvious emissivity
peak that gradually shifts towards the target wavelength
of 4.26 μm. Eventually, a near perfect emissivity peak is
achieved at 4.26 μm with a q-factor of 60.64. Further
insights into the structure evolution during the optimi-
zation process can be obtained from Fig. S4. The dis-
tribution of each layer thickness as well as the material
combinations are shown in Figs. 8b, c, respectively. Note
the formation of peaks in the layer thickness distribution
and the diversity of material combinations, indicating
that appropriate material combinations are more
important for achieving finer emissivity spectra. DQN
successfully recognized this feature and efficiently
implemented the design of the emitter with the help of
the defined initialization method. Consequently, the
combination of Si and SiO2 is undoubtedly the most
suitable choice for achieving the target emissivity spec-
trum for CO2 sensing.
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Discussion
In summary, we present a general deep learning fra-

mework, i.e., DQN, for emissivity engineering of WS-TE
design across applications. To demonstrate the generality,
three WS-TEs are designed for typical applications,
namely TC, RC and GS, which can autonomously select
suitable materials from the same self-built material library
for different design target functions and optimize to
output the best structural parameters from a huge opti-
mization space efficiently. The three design tasks are
based on the same structural framework, so they can
share the same material library, and can be easily exten-
ded from application to application by setting the corre-
sponding reward function. The merits of the deep
Q-learning algorithm include that it can (1) offer a gen-
eral design framework for WS-TEs beyond one-
dimensional multilayer structures, such as two-

dimensional periodic array and complicated structures;
(2) autonomously select suitable materials from a self-
built material library without presetting the initial mate-
rials, and (3) autonomously optimize structural para-
meters for the target emissivity spectra efficiently across
different applications. Additionally, the input parameters
of the DQN framework are highly flexible in materials,
structures, dimensions, and the target functions, paving a
general solution to other nonlinear optimization problems
beyond emissivity engineering.

Materials and methods
Simulation
The reflection and transmission of the multilayer WS-

TEs were calculated using transfer matrix method based
on the Fresnel equations. The emissivity was obtained
from the corresponding reflection and transmission
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according to the law of conservation of energy. The code
of DQN was written using the Keras package in Tensor-
Flow and implemented in Python.

Sample fabrication and preparation
The designed multilayer WS-TE samples were all

deposited by a magnetron sputter (Kurt J. LesKer-VD75).
The deposition rates of SiO2, TiO2, Ag, Si, W, Ge and ZnS
are 2, 3, 6, 9, 3, 5, and 11 nm/min, respectively.

Optical characterization
The infrared emissivity of the multilayer WS-TE sam-

ples was measured using a Fourier transform infrared
spectrometer (Nicolet iN10, Thermo Scientific).
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