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A B S T R A C T   

Lithium-ion battery temperature monitoring contributes to the higher performance of lithium batteries and re-
duces the risk of thermal runaway. Since the battery temperature can be approximated as a time series, this work 
reports a new model named convolutional transformer (Convtrans) for multi-step time series forecasting, which 
obtains pleasing results. To evaluate our model, we present a cross-sectional comparison of the model with the 
other three mainstream algorithms in multi-step time series forecasting and a vertical comparison with single- 
step time forecasting. On one hand, Convtrans has the minimum root mean square error with the highest pre-
diction accuracy and can also predict the trend and shape of temperature curves compared with the other three 
mainstream algorithms, which means that it has the best results in multi-step time series forecasting. On the 
other hand, compared with single-step time series forecasting, Convtrans predicts 24 times temperature data 
while doesn't sacrifice much accuracy even though it costs 6 times running time. Furthermore, in the case of 
predicting more points, it also maintains good accuracy and can perfectly predict trends of the temperature. In 
all, we prove the superiority of multi-step time series forecasting over a long period. Therefore, multi-step time 
series forecasting based on Convtrans can sever as the battery temperature prognostic technology providing 
timely warnings to assist battery thermal management.   

1. Introduction 

The world is on its way to the electric. The high energy density, great 
specific power and long cycle life of lithium-ion batteries (LIBs) have 
made them the preferred choice of technology for electrical power en-
ergy storage [1–3]. With the development of technology, the energy 
density of LIBs continues to increase, challenges are encountered in 
monitoring and managing the state of LIBs [4,5]. The battery tempera-
ture has a dramatic effect on the state of LIBs, such as State-of-Charge 
(SoC) and State-of-Health (SoH) [6]. The range of battery temperature 
is suggested to be 15 ◦C–35 ◦C [7]. On the one hand, during the charging 
and discharging process, a substantial amount of heat is generated inside 
the LIBs due to the exothermic reaction and internal resistance. If the 
heat cannot be dissipated in time and accumulates inside the LIBs 
resulting in a sustained temperature rise, thermal runaway is mostly 
likely to occur. In this case, the LIBs will rupture or even explode as the 
temperature and pressure rise [8]. On the other hand, at extremely high 
and low temperatures, the capacity of LIBs would severely decline, 
leading to poor SoH [9–11]. Consequently, real-time temperature 

prognostics providing timely warnings are essential to ensure the proper 
operation and safety of LIBs. 

However, the battery temperature prognostics is technical difficulty 
[12]. First, during the LIBs operation, their temperature will fluctuate 
wildly, which may increase the difficulty of forecasting. Furthermore, 
different cells and loading conditions can cause battery temperature 
changes, which means that both physical and chemical mechanism 
changes can cause temperature changes [12]. Lastly, the complexity of 
the heat production mechanism and the uncertainty of the environ-
mental conditions make the forecast of battery temperature changes 
more difficult [13]. 

In the field of forecasting temperature, there have been numerous 
physical models to simulate the thermal field such as Newman model 
[14] and Bernardi model [15]. However, the physical models have their 
limitations in application. Facing with the various battery types, usage 
environments and loading conditions, the simulation method must 
calculate each case owing the physical model is not universal, which will 
result in a great workload. Furthermore, the physical model creation 
takes into account many factors, and at the same time requires the 
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calculation of extensive formulas, which increases the complexity of the 
forecasting process. In all, real-time forecasting and timely warning 
based on physical models is difficult. 

Nowadays, data-driven methods are gradually applied to meet the 
needs of real-time forecasting and timely warning. Since the sensors can 
measure the real-time temperature of LIBs with slightly mean absolute 
error, data-driven methods based on statistical theory or machine 
learning algorithms can directly use the measured real-time data to 
forecast [16,17]. For example, one optimized data-driven algorithm 
with reasonable input parameters can forecast the temperature in 
various situations, reflecting their universality and transferability. 
Furthermore, data-drive methods can adjust output based on real-time 
data [18]. Hence, we can achieve real-time forecasting and timely 
warning by directly studying the battery temperature change instead of 
the internal physical and chemical reactions of the battery. The key to 
utilizing data-driven methods is how to choose a suitable algorithm 
based on the characteristics of the data [19]. During battery operation, 
the average temperature per cycle can be approximated as time series 
data. Time series data are the values of objects with the same mea-
surement time frequency over a time range [20,21]. Machine learning 
methods based on battery temperature time series data are silently 
emerging. For example, an algorithm named Long Short-Term Memory 
(LSTM) is applied to forecast battery temperature, whose root mean 
square error (RMSE) is 0.044 [13]. Furthermore, another algorithm 
named gated recurrent unit (GRU) is found less error in the datasets 
acquired from the Prognostics Center of Excellence (PCoE) of NASA [6]. 
However, their algorithms are based on single-step time series fore-
casting (only can forecast one time step), which is a major limitation in 
practical applications where multi-step forecasting (can forecast multi-
ple time steps) is needed. Although we can use N single-step models to 
achieve multi-step forecasting, it is only practicable to predict small 
steps [22,23]. Furthermore, when forecasting the temperature, although 
RNN-based frameworks (LSTM and GRU) can effectively forecast time 
series data, they will degrade performance due to long-term dependency 
[24–26]. 

In order to predict more effective multi-step battery temperature 
time series, we use convolutional transformer (Convtrans), which has 
been successfully applied to several real-world datasets [27]. To 
compare, the results of three mainstream algorithms of single-step and 
multi-step battery temperature time series forecasting, including LSTM, 
GRU and Temporal Convolutional Network (TCN) [28,29], are also 
given in SI and this paper, respectively. The training set and testing set in 
the two kinds of forecasting methods are shown in Fig. 1. In our work, 
inputs (Xi) are both made of 24 time steps (Ti) in two forecasting 
methods. And outputs (Yi) of multi-step time series forecasting algo-
rithms are made of 24 time steps, while that of single-step time series 
forecasting algorithms are made of 1 time step. In addition, the training 
sets are set to the same (m = n) to compare the two forecasting methods. 

2. Method 

The main goal of Convtrans is to achieve multi-step temperature time 
series forecasting. Hence, we demonstrate our model including denois-
ing auto encoder and convolutional transformer. The detailed archi-
tecture is shown in Fig. 2. 

2.1. Input and normalization 

To reduce the impact of temperature distribution changes on 
network model and enhance the accuracy and convergence of network 
model, input data must be normalized [30,31]. Let X = {T0, T1, T2, …, 
Tn-1} denotes the input temperature time series data with length n, 
which is normalized to [0,1], as follows: 

X′ i = X′

min+
Ti − Tmin
Tmax − Tmin

×
(
X′

max − X
′

min

)
(1)  

where X′
i, X′

min and X′
max is the index i, minimum and maximum of X′

tensor (scaled input tensor), respectively. 

Fig. 1. The training set and testing set in the two kinds of forecasting methods: (a) single-step time series forecasting (b) multi-step time series forecasting, where Xi 
means the (i + 1st) input of model, Yi means the corresponding target of mode, and Ti means the average battery temperature of i-th cycle. 
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2.2. Denoising 

The raw input is always riddled with noise, especially when the 
external ambient temperature fluctuates. If the raw data without 
denoising is directly input to the neural network, it will severely damage 
the prediction accuracy of the network model. To preserve stability and 
robustness, we use Denoising Auto Encoder (DAE) [32] to denoise the 
normalized input data, which is an unsupervised method to learning 
useful information. 

Let X′
t = {X′

t+1, X′
t+2, …, X′

t+m} ∈ X′, randomly select m data in the 
normalized data set and keep their values, and set all the rest to 0. 
Furthermore, Gaussian noise is added to the input to obtain the cor-
rupted input Xcor before denoising [33]. Then denoise the corrupted 
input: 

z = a
(
WTXcor + b

)
(2)  

where z, a(⋅), W, b denotes output of DAE encoder, activation function 
(ReLU), weight, bias, respectively. 

Lastly, to obtain the reconstructed the input, map the latent repre-
sentation back to the input sequence, as follows: 

Xrecon = W ′ z+ b′ (3)  

where W′, b′, denotes weight, bias of the output layer in DAE, respec-
tively. In addition, the objective function is defined as follows: 

ξd =
1
n
∑1

n
ℓ(Xcor − Xrecon)+ λ

(
‖ W‖

2
F − ‖ W ′

‖
2
F

)
(4)  

where ℓ(⋅) denotes the loss function. Obviously, we use the L2 norm to 
prevent overfitting. Next the finally denoised output data Xrecon = {T′

0, 
T′

1, T′
2, …, T′

n-1} is fed to the next decoder as the new datasets. 

2.3. Convolutional transformer 

Convtrans adds convolution to transformer. Since the canonical 
transformer is a sequence-to-sequence (seq2seq) architecture, which is 
inherently suitable for multi-step time series forecasting, we choose the 
transformer network. However, the similarity of a time point in the input 
Xi in canonical transformer is computed based on their pointwise values, 
without making full use of the rest time points (the rest 23 points in this 
paper) [27]. Because causal convolution shares weight parameters and 
have no access to future information, Convtrans can concern the local 
context information (like shape), which benefits multi-step time series 
forecasting. Here, We use one-dimensional convolution as follows: 

Xconv k = h(k − i)*Xrecon(i) =
∑N

i=0
h(k − i)Xrecon(i) (5)  

where Xconv, h, Xrecon denotes the convolutional output, convolution 
kernel and input, respectively. The applied kernel size k, in_channel, 
out_channel, padding, dilation and stride is 9, 2, 256, 8, 1 and 1, 
respectively. So when we let batch size = 16, the shape of data changes 
from (2, 24) to (256, 33), which means the output contains more local 
context information. 

Next, we take the convolutional output into transformer network. 
Here we only employ encoder to train the convolutional output and 
learn the function relationship between inputs and outputs. Encoder has 
N encoder layers, and we take N = 3. The embedding sub-layer employs 
word2vec to create a lookup table [34], whose shape is (512, 256). To 
fully use the position information of the time series data, we use posi-
tional encoding [35]: 

PE (t, 2k) = sin
(
t
/
100002k/dmodel

)
(6)  

PE (t, 2k+ 1) = cos
(
t
/
100002k/dmodel

)
(7)  

where t and dmodel denote the time step and the dimension of input. 

Fig. 2. Convtrans network for multi-step time series forecasting on the temperature.  
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The Masked Multi-Head Self-Attention sub-layer consists of Multi- 
Head Self-Attention and mask. Multi-Head Self-Attention aims to learn 
the similarity of input data [36–38]. To learn it, Self-Attention uses dot- 
product to indicate the magnitude of similarity. Let Q, K, V denote 
query, key, and value, Scaled Dot-Product Attention [39] is defined as 
follows: 

Attention(Q,K,V) = Softmax
(
QKT
̅̅̅̅̅
dK

√ +M
)

V (8)  

where Softmax maps the input as a real number between 0 and 1, then 
normalizes it to ensure that the sum is 1. And dK denotes the dimension 
of K, which avoids minimal gradients and generates softer attention 
[40]. In addition, the size of Q, K, V is (24, 256), (33, 256), (33, 256) in 
our model, respectively. Note the mask matrix M is used to mask out 
future information by adding negative infinity to future data, while 
historical data remains intact. 

To learn more useful information of similarity, Multi-Head defines as 
follows: 

headi = Attention
(
QWiQ,KWiK,VWiK

)
(9)  

Multi-Head(Q,K,V) = Concat(head0, head1,…, headn− 1)WO (10)  

where Wi
Q, Wi

K and Wi
V are corresponding weight matrix, WO is a 

trainable splicing matrix. 
Feed-Forward sub-layer strengthens the ability to express this rep-

resentation by using non-linear variation [41]. In this paper, Feed- 
Forward sub-layer has two different mappings (linear and ReLU non- 
linear) as follows: 

FFN(x) = ReLU(xW1+ b1)W2b2 (11)  

ReLU(x) = max(0, xW1+ b1) (12) 

Therefore, the created Feed-Forward sub-layer is applied to x (tem-
perature in each time step) identically to mitigate overfitting, prevent 
gradient explosion, and reduce computational effort. 

The last Add & Norm sub-layer mitigates the gradient disappearance 
and the degradation of the weight matrix [42,43] as follows: 

Z = f(x)+ x (13)  

where Z denotes output, f(x) denotes learned function. 
Finally, we reduce dimensionality to one dimension to obtain trained 

results by using linear layer as follows: 

Tprediction = WlinearZ+ blinear (14)  

where Tprediction, Wlinear, blinear denotes the output, weight, bias of the 
linear layer, respectively. 

Furthermore, the Convtrans model is programmed employing 
Pytorch [44]. In Convtrans model, loss is evaluated by using the loss 
function of RMSE as follows. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Tprediction − Ttrue)2

n

√

(15)  

where n, Tprediction and Ttrue denote total number of steps in one pre-
diction, the predicted temperature and the true temperature, respec-
tively. In addition, some hyper-parameters are given: the initial learning 
rate is 0.004; the Learning rate decay is 0, and the optimizer is SGD. 

3. Datasets 

Here we select 2018-04-12_batch8_CH43 dataset (containing 
830,319 sample data) from previous researchers [17] to do the single- 
step and multi-step time series forecasting. Note the temperature data 
we used are the cell surface temperatures. The charging temperature 

range of the lithium-ion phosphate (LFP)/graphite cells is 0 ◦C–55 ◦C 
and the discharging temperature range is − 30 ◦C–55 ◦C. In their 
experiment, these cells are cycled in a forced convection temperature 
chamber setting to 30 ◦C (Amerex Instruments). In order to overcome 
the problem of time-consuming calculations, we use the average tem-
perature of each cycle as input time series data shown in Fig. 3. In the 
whole data periods, the temperature fluctuation is very small at the 
beginning, but with the increase of the number of cycles, the tempera-
ture fluctuation range is gradually increasing, and after 1000 cycles, the 
temperature is generally on the rise. Furthermore, the temperature of 
each cycle is theoretically closely tied to the temperature of the previous 
cycles, which means that the temperature of next time point will be 
influenced by the historical temperature points' shape. This is consistent 
with the superiority of Convtrans algorithm. In this way, our forecasting 
results based on Convtrans algorithm can give a reasonable values and 
trends of the next 24 cycles as a reference. 

4. Results and analysis 

First, we show the prediction of the four algorithms with the split 
ratio 8:2 in Fig. 4. It is not difficult to see that Convtrans has the best 
prediction with the true experimental results in multi-step forecasting. 
To further evaluate the comprehensive performance of the algorithm, 
the RMSE, running time and correlation coefficient (R) are calculated in 
Fig. 5. To make RMSE and R comparable in the four algorithms, we 
calculate them in whole test sets by adding all calculated RMSE and R in 
each prediction up respectively, and then averaging the cumulative 
results. 

According to the calculated RMSE results, the Convtrans has the 
minimum RMSE among the four algorithms, reaching 0.120, while that 
of LSTM reach 0.202, which is the maximum shown in Fig. 5(a). As for 
the time cost, due to the complexity of the algorithm, Convtrans algo-
rithm takes the most time shown in Fig. 5(b). During the training pro-
cess, Convtrans computation time reaches in about 1 min in our lab 
computer (CPU: Intel i5-9400U@2.90 GHz, Memory: 16 GB). Note that 
the time cost of prediction has no big difference for the four algorithms. 

Furthermore, the trend of the forecast is also an important indicator 
in our assessment of the multi-step forecast. So the value of R, which is 
used to study the degree of correlation between the predicted and true 
values, represents the degree of accuracy of the predicted trend. R of 
Convtrans is 0.421 for the ratio of 8:2 shown in Fig. 5(c). As a com-
parison, the other three algorithms have negative coefficients, which 
means that when the temperature is falling, their predicted temperature 
is perhaps rising. 

To support this, we give other two predictions shown in Fig. 6. 
Obviously, there is a dip of the true 24 temperature points in Fig. 6(a). 
However, only the Convtrans prediction shows the shape of dip near the 
cycle 1015, while other three algorithms' predicted trends are very 
different from the true trend. In detail, LSTM-predicted temperature 
trend shows a peak at near cycle 1015, TCN-predicted temperature 
fluctuates up and down. Although GRU-predicted trend is somewhat 
consistent with the true, the predicted decline of the temperature near 
cycle 1030 departs from the uptrend of the true values. The comparison 
is more obvious in Fig. 6(b). The Convtrans-predicted temperature curve 
trend is consistent with the real one, even the shape is basically the 
same. Therefore, we can obtain the conclusion that the Convtrans can 
predict the suitable trend. This conclusion fits with Convtrans advantage 
of paying more attention to the shape of the surrounding points. 

In addition, when we use the split ratio 5:5, Convtrans still has the 
minimum RMSE and the maximum R among the four algorithms as in 
Fig. S1, showing that Convtrans still has the aforementioned effective 
prediction. 

On the other hand, to find out whether multi-step time series fore-
casting is a more suitable application than single-step time series fore-
casting, we compare the single-step (LSTM, GRU and TCN) and multi- 
step time series forecasting (Convtrans). Here, the Xi used in the input 
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is consist of 24 time points in the three algorithms for the comparability 
(whole prediction is shown in Fig. S2). All the three single-step algo-
rithms have pleased prediction in the ratio 8:2 shown in Fig. 7. However, 
predicting only the temperature at the next moment is difficult to apply 
practically. By comparison, our Convtrans network predict more time 
points on the basis of the same amount of input time point data and does 
not sacrifice accuracy. As for time cost, the running time of TCN is the 
minimum. This shows that TCN algorithm sacrifices accuracy for fast 
running time. Finally, in terms of predicting trends, single-step time 
series prediction is unable to obtain correlation coefficient R like multi- 
step time because only one temperature point is available for each 
prediction. In all, compared with the single-step forecasting, Convtrans 
costs 5 times the running time, yet predicts 24 times temperature data 
without sacrificing accuracy. 

To verify whether the Convtrans algorithm is able to predict more 
data points, we show the predicted 48 temperature points based on the 
previous 48 data points in Fig. S3. It is not difficult to find that with more 
predicted points, Convtrans is still able to accurately predict the trend 
and even the shape of the temperature curve, with correlation coeffi-
cient R as high as 0.573. As for accuracy, it's RMSE is 0.111, which 
means that predicting more points does not sacrifice accuracy. In 
addition, we also verify that all our conclusions hold for the other 
datasets (labeled as 2019-01-24_batch9_CH21 in the dataset of pub-
lished article [17]) as shown in Fig. S4, Tables S1 and S2. So Convtrans is 
a suitable method in forecasting the temperature of LIBs. 

Fig. 3. Cycle performance on temperature for the battery.  

Fig. 4. Four algorithms' forecasting results for the next 24 cycles. The ratios of training data and prediction data are 8:2.  

Fig. 5. Four algorithms' forecasting (a) RMSE in whole test sets and (b) Running time (c) R in the split ratio 8:2.  
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Fig. 6. Four algorithms' forecasting results for the next 24 cycles starting with the (a) 1008th and (b) 1014th cycle in the ratio of 8:2.  

Fig. 7. Three algorithms' single-step forecasting (a) RMSE in whole test sets and (b) Running time in the split ratio 8:2.  
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5. Conclusion 

Since the average temperature of each cycle is consistent with the 
characteristics of time series, we use data-driven method to predict the 
temperature of LIBs in this research. To predict more temperature data, a 
multi-step time series forecasting battery temperature technology is 
developed based on Convtrans algorithm, which has smaller prediction 
errors and provides accurate trends and even essentially similar shape. 
Furthermore, compared to single-step time series forecasting, although 
it spends five times the running time, Convtrans algorithm does not 
sacrifice accuracy and obtain more predicted temperature data. In all, 
this paper proposes a new model based on Convtrans for battery tem-
perature warning in time, which is of guidance for the design of battery 
thermal management systems. 
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Appendix A. Supplementary data 

Here are the predictions of three algorithms (LSMF, GRU and TCN) 
for the single time series forecasting and the predictions of Convtrans in 
the case of predicting more points (48). The prediction using other 
datasets is also provided. Supplementary data to this article can be found 
online at https://doi.org/10.1016/j.est.2023.107092. 
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