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ABSTRACT

Rapid identification of lattice thermal conductivity of semiconductors from their crystal structure is required in the discovery of functional
materials. A promising strategy is using a machine learning method based on a first-principles dataset, which, however, suffers from the
dilemma of too little data available. In this work, the crystal graph convolutional neural networks (CGCNN) model was improved by enhanc-
ing the information of atomic descriptors (for short CGCNN-D), and the transfer learning (TL) method was combined to overcome the
problem of small datasets. It is found that the CGCNN-D has improved predicting performance for both electronic bandgap with large data
volume and thermal conductivity with small data volume, with the mean absolute error reducing 7% and 10%, respectively, indicating the
importance of the improved atomic description. Applying TL with electronic bandgap as a proxy into the CGCNN-D further upgrades the
prediction accuracy for thermal conductivity that has only 95 pieces of data, yielding 19% decrease in the mean absolute error as compared
to the original CGCNN. The trained CGCNN-D-TL model was used to quickly estimate the thermal conductivities of thousands of semicon-
ductors, and the materials identified with potentially high thermal conductivity were further screened by the optimized Slack model. Finally,
the most promising BC2N was discovered and then confirmed by the first-principles calculations, which shows room-temperature thermal
conductivities of 731, 594, and 500W m�1 K–1 along the three principal axes of its lattice structure.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0142150

Semiconductors are the key components of electronic products
and known as the cornerstone of the modern industry. The thermal
transport property of semiconductors is one of the most crucial con-
cerns that must be considered in devices due to its inherent nature.
High thermal conductivity is expected for rapid heat dissipation to
preserve the performance of electronic devices. Finding a material
with desired functionalities while taking into account the thermal con-
ductivity in a balanced manner is the basic criterion. Assisted by the
computing methods, some materials are predicted to have potentially
superior properties and are progressively synthesized, yielding a lot of
exciting systems such as cubic BAs.1–4 Among the state-of-the-art cal-
culation methods for thermal conductivity, the first-principles calcula-
tion based on the density functional theory (DFT) is a parameter-free
framework with predictive accuracy and has been well developed in
recent decades.5–7 Nonetheless, one disadvantage that needs to be
acknowledged is its heavy computational burden. Up to now, the

intrinsic thermal conductivities of only a few hundred systems are
known in total of the tens of thousands semiconductors documented
in the Materials Project database.8 Therefore, an efficient method is
desired for predicting the thermal conductivities of the large amount
of semiconductors to provide the knowledge of their thermal transport
potentials.

To accelerate the calculations of the thermal conductivities of
materials while maintaining a certain degree of accuracy, the machine
learning is used to combine with the first-principles calculations.9–11

The applications mainly focus on training interatomic potentials for
molecular dynamics simulations, predicting the properties of materials
with the same structure but different elements, and designing the
atomic architecture of nanostructured systems.12–15 The process can
be briefly introduced as that the first-principles calculations are per-
formed on a small portion of the systems, and the obtained data are
used for training of the machine learning model, which is then
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employed to predict the properties of the rest. However, this strategy is
strictly requiring for the dataset, which would not be suitable for
screening of semiconductors with target thermal conductivities from
thousands of candidates; therefore, more general machine learning
strategies are needed.

Many machine learning models have demonstrated sound ability
in predicting the properties of materials from their crystal structures
such as formation energy16–18 and electronic bandgap.19–22 Among
the various models, a neural network23,24 shows great potential for its
strong scalability. Some of its applications can construct the structure
of materials and plainly mine the composition information in a deeper
level. Considering the thermal conductivity is significantly affected by
the crystal structure, the atomic component information and geomet-
ric structure information should be the basic inputs of the machine
learning models. Recently, crystal graph convolutional neural net-
works (CGCNN)17 have attracted great attention, because they provide
a simple and general framework that directly learns material properties
from the atoms and their connections in the crystal. However, as com-
pared to the electronic properties, the investigation of modeling ther-
mal conductivity is rare due to the lack of thermal conductivity data.
The available study is found using extremely simplified models to
approximately calculate the thermal conductivity, leading to biases in
the data itself.25 The data volume of thermal conductivity obtained in
the first-principles level is much smaller than the electronic properties
accounting for its much more time-consuming density functional per-
turbation (DFPT) calculations on dozens of Brillouin zone points or
DFT calculations on hundreds of displaced supercells, which are at
least several orders of magnitude heavier than the self-consistent field
calculation for electronic properties. The small dataset issue is one of
the major challenges in the machine learning prediction of thermal
transport properties.12 In addition, current improvement efforts of the
CGCNNmodel emphasize a more complex description of the geomet-
ric structure, such as the iCGCNN and A-CGCNN models, but ignore
the description of atomic features.26,27

Therefore, in this work, we improved the atomic descriptors of the
CGCNN model to describe the crystal traits in more detail and call it as
the CGCNN-D model in order to distinguish from the original model.
We collected the thermal conductivity values calculated by the first-
principles theory for 95 semiconductor single crystals. To use this small
dataset for prediction, the transfer learning (TL) technique was adopted
to overcome the problem of data dilemma, the main idea of which is to
train the model for a proxy property on a large dataset and then transfer
the learned knowledge to the machine learning model of the target
property, which is limited in a much small dataset. The enhanced per-
formance by TL has been verified in the materials’ informatics stud-
ies.18,28,29 The predicting performances of the CGCNN and CGCNN-D
models were compared, and it is found that the CGCNN-D model has
better performance than the CGCNN, whatever by using large samples
or small samples datasets. In addition, the TL method using electronic
bandgap (Eg) as proxy property is significantly benefited to the predic-
tion of thermal conductivity (Tc). After obtaining the well-trained model
for Tc, we used it to screen several potentially high Tc crystals from thou-
sands of systems based on their ground state lattice structure.
Considering the Tc is the result of lattice vibration, the optimized Slack
model30,31 was used for further identification. Finally, orthorhombic
BC2N was found to has high thermal conductivity and was confirmed
by the first-principles calculations.

The machine learning prediction of Tc for crystalline materials
needs a basic dataset, descriptors, and a machine learning model.12–15

Herein, two sets of data are acquired. The first group is the room-
temperature Tc of single-crystal semiconductors. A total of 95 pieces of
data calculated by first principles are searched from the litera-
ture1,5,9–11,32–51 as listed in Table S1 of the supplementary material.
Significantly, the values are distributed over four orders of magnitude.
The Tc of diamond with naturally occurring isotopes can be as high as
2290W m�1 K–1;1 on the contrary, it is as small as 0.368W m�1 K–1

for Tl3VSe4.
32 Moreover, the distribution is extremely uneven, as

shown in Fig. S1 of the supplementary material, with 80% of the data
falling below 100W m�1 K–1, so the machine learning model may be
prone to low Tc materials. Therefore, following the usual course,25 the
values of Tc are taken the logarithm to make the distribution of data
more suitable for the regression algorithms. The other group of data
aims to the crystal structure of material and its corresponding Eg. The
former is used to identify the semiconductors throughout the machine
learning process, and the latter is used as proxy property when the TL
method is employed. The data of the crystal structure and Eg are
extracted from the materials project database8 by traversing all binary
and ternary compounds and filtering them by the formation energy
smaller than 0.2 eV for stable and metastable structures. Then, the
materials with Eg between 0.2 and 5 eV are picked out for semiconduc-
tors. By additionally considering the difficulty of theoretical calculation
and practical synthesization for complex crystals, the systems with a
number of atoms in the primitive cell less than 10 are selected. Finally,
there are 4160 pieces of data as the source domain. The selection pro-
cess is shown in Fig. S2 of the supplementary material. The Eg is cho-
sen as the proxy property for two reasons: One is the data accessibility,
because Eg is a quantity available for all these semiconductors provided
by the database. The other is the possible relation between Eg and Tc.
In DFT, nearly all physical properties are related to the energy of the
ground state or the energy change under perturbation. The Eg of elec-
tronic states is determined by the charge density of the ground state,
while the Tc is related to phonon states that are determined by the
ground state and the response to the perturbation of atomic displace-
ment. It has been reported that the Eg acting as proxy property for
deep neural networks improved the performance in predicting the
phonon related group velocity and heat capacity.52

The CGCNN model regards the crystal structure as a crystal
graph with nodes representing atoms and edges representing bonding
connections and encodes the atomic information and the distance
between atoms into crystal descriptors through a convolutional neural
network.17 The information for describing atom and bond feature vec-
tors consists of binary digits. Suitable descriptors may not only
improve the accuracy of prediction but also make the model to have
better robustness. In the CGCNN model, discrete features in one-hot
encoding are used to describe the element feature, which then repre-
sents each atom in the crystal by nine features. To have more sufficient
description, in the CGCNN-D model, we ameliorate the descriptors of
elements in consecutive value, and each atom vector is expressed with
58 features for all elements obtained from the XenonPy program.28

The details of the implementation for atomic information enhance-
ment as well as the following TL are provided in Sec. 2 of the supple-
mentary material.

To assess the performance of CGCNN-D compared with
CGCNN, these two models were trained against the Eg and Tc datasets.
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The fivefold cross-validations were performed with mean absolute
error (MAE) and coefficient of determination (R2) as the metrics to
evaluate the model performance. Figure 1 illustrates the MAE and R2

of eight independent cases. The values do not change much in multiple
cases, indicating strong robustness and no overfitting problem for
both CGCNN and CGCNN-D models. The histograms clearly show
that the CGCNN-D performs better than CGCNN whatever using the
large Eg samples or small Tc samples. For Eg, the CGCNN-D obtains
7% decrease in the average MAE as compared to CGCNN, from 0.480
to 0.447 eV, and the R2 also has an increase from 0.686 to 0.703.
Training with the much smaller dataset of Tc, higher prediction accu-
racy is also gained by CGCNN-D. The average MAE reduces 10%
from 0.228 to 0.207W m�1 K–1, and the average R2 increases from
0.874 to 0.904. It can be seen that the enhancement in atomic informa-
tion indeed yields performance gains for both large and small scales of
datasets. This is because the message of crystal is based on the atomic
features; therefore, when enhancing the description of the element, the
information can pass in more detail.

To build the TL model, the CGCNN and CGCNN-D models are
pretrained on the 4160 data of Eg. Then the hyperparameters from the
embedding and convolutional layers are transferred to the target model
as the initial parameters and retrained using the fine-tuning approach.
Figure 2 shows the MAE and R2 of CGCNN and CGCNN-D models
with and without TL in eight independent fivefold cross-validations for

Tc. It is obvious that the TL decreases the MAE and increases the R2 for
all cases, indicating the considerable improvement brought by TL in the
prediction accuracy. Therefore, it can be inferred that the TL can act on
the CGCNN and CGCNN-D models, and it can extract some informa-
tion from proxy properties and then make sense for the target property
although the relation between the proxy property and target property is
not direct. When the TL is combined to CGCNN, the average MAE
changes from 0.228 to 0.207, which is about 9% reduction. When the
improved atomic descriptor and TL are both employed, the average
MAE further decreases to 0.185, about 19% reduction as compared to
the original CGCNN. Meanwhile, the average R2 of CGCNN and
CGCNN-D-TL for Tc are 0.874 and 0.921, respectively, giving an
improvement of 5% by the enhanced atomic information and the TL
method. For intuitive display of predictive power, Fig. 3 shows the Tc
predicted by the CGCNN-D-TLmodel against the first-principles calcu-
lated values. The MAE is as small as 0.183W m�1 K–1, and the R2 is as
high as 0.928, suggesting a fairly good prediction.

To ensure the reliability, 25 CGCNN-D-TL models were trained
and used to predict the Tc of the remaining thousands of semiconduc-
tors and then the obtained Tc were averaged. The materials with esti-
mated Tc larger than 500W m�1 K– 1 are listed in Table S4 of the
supplementary material. It should be pointed out that the prediction
of the CGCNN-D-TL model is based on the ground state crystal struc-
ture. Unlike electronic properties that are mainly determined by the

FIG. 1. MAE and R2 of eight independent predictions for (a) and (b) electronic bandgap and (c) and (d) thermal conductivity using CGCNN and CGCNN-D models,
respectively.
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ground state, the thermal conductivity additionally involves lattice
vibration. Therefore, the optimized Slack model30,31 was used for fur-
ther screening. The details were provided in Sec. 3 of the supplemen-
tary material. As expected, some of the high Tc materials predicted by
the CGCNN-D-TL model actually have low Tc, but there are still some
materials that do have high Tc potential. Among these materials,
orthorhombic BC2N with a space group of Pmm2 is the most promis-
ing candidate. The anisotropy of Tc is not considered in the CGCNN-
D-TL model and the Slack model, and thus, the corresponding
predicted Tc are 1130 and 483W m�1 K–1 at room temperature,
respectively. The first-principles calculations were used to examine the
Tc of BC2N, which is an anisotropic system with lattice constants of
2.538, 2.566, and 3.645 Å along the three principal axes as shown in
the inset of Fig. 4. The calculations were performed using the Vienna
Ab initio simulation package (VASP) with Perdew–Burke–Ernzerhof
(PBE) pseudopotentials. The second and third order interatomic force
constants (IFCs) were calculated using 6� 6� 4 supercell, and a trun-
cation of ninth nearest neighbors was adopted for third order IFCs.
The ShengBTE package6 was used to calculate Tc by iteratively solving
the phonon Boltzmann transport equation (BTE) with 30� 30� 20 q
grids. The related convergence test was provided in Sec. 4 of the

FIG. 2. (a) and (b) MAE and (c) and (d) R2 of eight independent calculations for thermal conductivity using CGCNN and CGCNN-D models with (red lines) and without (blue
lines) transfer learning, respectively.

FIG. 3. Predicted thermal conductivities by the CGCNN-D-TL model vs the first-
principles calculated values.
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supplementary material. At room temperature, the first-principles cal-
culated Tc of BC2N are 731, 594, and 500W m�1 K–1 along a, b, and c
axes, respectively. It can be seen that BC2N indeed has high Tc, indicat-
ing the feasibility of quick screening of materials with high Tc from
huge dataset by CGCNN-D-TL combined with the Slack model.

In conclusion, this work provided a quick screening scheme for
the thermal conductivities of semiconductors using improved
CGCNN combined with the TL method and the Slack model. The
atomic descriptor of CGCNN was modified with more precise element
descriptions, increasing from nine features to 58 features. This
improvement brings considerable boost in the prediction performance
of semiconductors both for the large dataset of electronic bandgap and
for the extremely small dataset of thermal conductivity. Moreover, the
TL method was applied to the atomic-information-enhanced CGCNN
in the prediction of thermal conductivity, which yields a further
increase in the prediction accuracy. This suggests that the TL method
is effective in solving the dilemma of too little data that generally exists
in machine learning for predicting physical properties of materials.
The improved CGCNN combined with TL has robust prediction per-
formance with the coefficient of determination of predicted thermal
conductivities against first-principles calculated values as high as
0.928. The well-trained models are then used to predict the thermal
conductivities of thousands of semiconductors based on their crystal
structures. The semiconductors estimated to have high thermal con-
ductivities were further screened by the optimized Slack model, giving
the most promising candidate of BC2N. The potential of BC2N was
validated by first-principles calculations, showing a thermal conductiv-
ity as high as 731Wm�1 K–1 at room temperature.

See the supplementary material for the data description of ther-
mal conductivity and electronic bandgap as well as the crystal struc-
ture of semiconductors, the implementation of atomic information
enhancement and transfer learning on CGCNN, the optimized Slack

model and estimated thermal conductivities of potential materials, and
the convergence check for the first-principles calculations of BC2N.
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