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a b s t r a c t 

Comprehensive understanding of phonon transport will facilitate the exploration of materials. Four- 

phonon scattering is find to be important to determine thermal conductivity in many materials, and 

normal scattering (N process) could lead to some unique phonon transport behaviors, especially in 2D 

materials. In this work, we studied four-phonon and normal scattering in hexagonal structures, both of 

which were found to be significant. With the increase of atomic mass ratio, the relative four-phonon 

scattering is gradually enhanced, whereas N process is weakened. Callaway model and Allen’s modified 

models were used to approximate the thermal conductivity, and we find that the models are applicable 

in some cases with relative weak N scattering intensity. 

© 2023 Elsevier Ltd. All rights reserved. 
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. Introduction 

Due to the novel properties of two-dimensional (2D) materi- 

ls and the progress of nanotechnology, two-dimensional materials 

re receiving increasing attention. 2D materials provide an ideal 

latform to explore the various phonon behaviors. For example, 

raphene has the highest thermal conductivity to date [1,2] and 

 lot of researches have been devoted to understanding phonon 

ransport in it [3,4] . 

The exact thermal conductivity of graphene has been explored a 

ot. For example, Zou et al. have found that the performance of MD 

imulation on thermal conductivity of graphene greatly depends 

n the potential used [3] . As a method without adjustable param- 

ters, there is no doubt that three-phonon based phonon Boltz- 

ann transport calculation has gained great success in predicting 

honon properties [5–7] , however, some studies have shown that 

onsidering three-phonon alone is insufficient to fully understand 

honon properties. Feng et al. found that the length-dependent 

hermal conductivity of 9 μm graphene is reduced from 3383 to 

810 W/(mK) at room temperature by involving four-phonon scat- 

ering [8] , indicating the significant effect of four-phonon process. 

t has been proved that four-phonon scattering is generally impor- 

ant in some solids and can remedy the discrepancies between ex- 

eriment and calculation values [9–12] . And in particular, the in- 
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lusion of four-phonon scattering reduces the room-temperature 

hermal conductivity of BAs and AlSb by 48% and 70% respec- 

ively, indicating that four-phonon scattering is more important 

han three-phonon scattering [10] in these materials. In more stud- 

es involving four-phonon scattering [13–17] , the decrease in ther- 

al conductivity of 2D materials has ranged from ∼40% to ∼90%. 

Graphene’s ultra-high thermal conductivity has been attributed 

o the strong normal scattering [18–22] . Normal (N) and Umklapp 

U) scattering are defined regarding the momentum conservation 

23] . In the N process, the total momentum of phonon is con- 

erved: �
 q 1 + 

�
 q 2 = 

�
 q 3 , hence, N process does not contribute directly 

o thermal resistance but it could affect phonon transport by redis- 

ributing the phonon momentum. For the U process, the net mo- 

entum changes: �
 q 1 + 

�
 q 2 = 

�
 q 3 + ��

 G . It creates a phonon with a 

omentum k-vector outside the first BZ. And the phonon propa- 

ation direction is reversed, directly causing thermal resistance. In 

D materials like graphene, the large anharmonicity and density 

f states of the quadratic ZA mode enhance N process and thus 

eads to high thermal conductivity [18,20,24] . N scattering is also 

esponsible for other interesting phenomena, such as strong size 

ffect [25,26] , Poiseuille flow [27–29] , and second sound [29,30] . 

oreover, thermal transport can be enhanced by modulating N/U 

cattering in materials like bilayer graphene [31] . 

From the above literature review, it can be seen that the explo- 

ation of the four-phonon as well as N/U scattering is important 

or understanding phonon transport. However, when those effects 

hould be considered in the calculation of thermal transport, and, 

ow significant are the effects remain to be explored. Here we se- 

https://doi.org/10.1016/j.ijheatmasstransfer.2023.124475
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Table 1 

Comparison of thermal conductivity (in W/(mK)) under 300 K obtained from iteration (ITE), RTA and Callaway and Allen models. The data in parenthe- 

ses represent deviations from the accurate thermal conductivity (iterative solution). The downward arrows in the column of 3&4 ph ITE represent the 

magnitude of the reduction in thermal conductivity due to four-phonon scattering, which is the amount of reduction compared to the three-phonon 

limited iterative solution. 

3ph ITE 3ph RTA 3ph Callaway 3ph Allen 3&4 ph ITE 3&4 ph RTA 3&4 ph Callaway 3&4 ph Allen 

Graphene 3058.6 487.8 (-84%) 1241.4 (-59%) 1890.8 (-38%) 1389.5 ↓ 55% 375.3 (-73%) 851.9 (-39%) 810.5 (-42%) 

BN 1024.6 242.2 (-76%) 438.7 (-57%) 821.2 (-20%) 229.4 ↓ 78% 165.1 (-28%) 227.1 (-1%) 227.9 (-1%) 

AlN 190.1 55.6 (-71%) 74.3 (-61%) 128.8 (-32%) 21.2 ↓ 89% 20.0 (-6%) 20.3 (-4%) 21.1 (0%) 

GaN 21.9 11.0 (-50%) 13.4 (-39%) 29.7 (36%) 1.39 ↓ 94% 1.36 (-2%) 1.37 (-1%) 1.41 (1%) 
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ect a series of simplest planar hexagonal structures, graphene-like 

aterials, to study the atomic ratio effect on the four-phonon and 

/U scattering process, where the influencing factor of structure 

as been equally treated. In this study, we have investigated the 

our-phonon and N/U scattering in graphene and XN (X = B, Al, 

a) by means of first-principles combined with phonon Boltzmann 

ransport equation (BTE). The calculations show that four-phonon 

cattering plays a significant role in all the four considered mate- 

ials and the relative four-phonon scattering is gradually enhanced 

ith the increasing of atomic ratio, while the relative N scattering 

ntensity decreases. 

. Computational details 

The first principle calculations are carried out employing 

he Vienna ab initio simulation package (VASP). The Perdew- 

urke-Ernzerhof (PBE) generalized gradient approximation (GGA) is 

dopted as the exchange-correlation functional. All the four struc- 

ures (graphene, BN, AlN, and GaN) use a plane wave basis with 

 cutoff energy of 600 eV, and the Brillouin zone (BZ) is sampled 

sing 18 × 18 ×1 �-centered k-mesh grids. A vacuum spacing with 

he thickness of 20 Å is used to avoid the effect of mirror interac-

ion. 

Thermal conductivity is obtained by the Boltzmann trans- 

ort equation solver FourPhonon program [32] . In the scheme of 

honon BTE, the thermal conductivity can be written as [33] : 

 

αβ = 

1 

k B T 2 8 π3 

∑ 

λ

∫ 
( f 2 0 + f 0 ) h̄ 

2 ω 

2 
λ,q v 

α
λ,q v 

β
λ,q 

τλ,q dq (1) 

here f 0 is phonon distribution function, ω is phonon frequency 

nd is obtained by diagonalizing the dynamic matrix. Phonon 

ranch and wave vector are represented by λ and q , respectively. 

, β are Cartesian directions. τ and v represent phonon lifetime 

nd group velocity respectively, which are usually decisive for ther- 

al conductivity. 

Force constants (IFCs) are required to solve BTE. All the force 

onstants are calculated using real-space finite-difference method 

ith 5 × 5 ×1 supercells, and BZs are sampled with only the �

oint. 7th and 3rd nearest neighboring atoms are considered when 

alculating the 3rd and 4th IFCs. And in order to get the conver- 

ence of the thermal conductivity, the integration of BZs are sam- 

led with a q-mesh of 140 × 140 ×1 and 40 × 40 × for only three-

nd four-phonon included processes, respectively. And the conver- 

ence test for the parameters can be found in the supporting in- 

ormation. 

Relaxation time approximation (RTA) is conventionally em- 

loyed to solve the BTE problem. However, RTA treats both N and 

 processes as thermal resistance, resulting in an underestimation 

f the intrinsic thermal conductivity in the N dominated system. 

tarting from the RTA solution, an iterative process (ITE) can be 

ade to obtain an exact thermal conductivity. Iteration on three- 

honon process can be made with ShengBTE package, and for four- 

honon scattering, we use our in-house modified ShengBTE code 

o perform the iteration process when four-phonon scattering is 

ncluded. 
2

. Results and discussion 

.1. Four-phonon scattering 

The thermal conductivity involving only three-phonon scatter- 

ng at 300 K for graphene, BN, and GaN is 3058.6, 1024.6, and 

1.9 W/(mK) (also shown in Table 1 ), respectively, which is con- 

istent with literature results [31,34–37] . For AlN, we obtained a 

hermal conductivity of 190.1 W/(mK), which is higher than the re- 

ult of Wang et al. (73.4 W/(mK)) [38] , however, lower than that of 

anerjee et al. (306.5 W(mK)) [39] . The difference may origin from 

he larger cutoff neighbor and q-mesh in this work. The calcu- 

ated four-phonon thermal conductivity is 1389.5, 229.4, 21.2 and 

.39 W/(mK) for graphene, BN, AlN, and GaN, all of which show 

ignificant decrease compared to the three-phonon limited thermal 

onductivity. Our four-phonon thermal conductivity of graphene is 

igher than that of Feng et al. [8] , however, as Feng et al. have de-

lared, since the 4th IFCs in their work is obtained using classical 

nteratomic potential and has not been validated against first prin- 

iples, the absolute value of thermal conductivity after including 

our-phonon scattering should be interpreted qualitatively. 

We plot the phonon spectrum in Fig. S4. Band gaps of 4.9 and 

.9 THz are found in AlN and GaN, respectively, which stem from 

he large atomic mass ratio (1.9 for AlN and 4.4 for GaN). In ma- 

erials like 2D BAs [13] , bulk BAs [9] , and NbC [40] , large phonon

and gaps limit the three-phonon processes, however, it is not a 

estriction for four-phonon processes, thus lead to significant four- 

honon scattering phase space. We further plot the phase space 

41] of three- and four-phonon scattering process in Fig. S5. The 

hase space of three-phonon is more significant in graphene and 

N while it is relatively weakened in AlN and GaN. It is hard 

o satisfy energy conservation in three-phonon scattering process 

ue to the large phonon band gap, however, it does not limit 

he four-phonon processes between the upper and lower branches. 

herefore, the three-phonon scattering phase space of the acous- 

ic branch’s high frequency phonons of GaN is comparable to that 

f four-phonon (as marked in the red ellipse in Fig. S5 (d)). The 

cattering phase space is also decomposed into three individual 

rocesses, namely, splitting (three-phonon process: λ1 −→ λ2 + λ3 , 

our-phonon process: λ1 −→ λ2 + λ3 + λ4 ), recombination (the re- 

erse of the splitting process) and redistribution (four-phonon pro- 

ess: λ1 + λ2 −→ λ3 + λ4 ). The three processes shown in Fig. S6 and 

7 indicate that the phase space of splitting process increases with 

he increase of phonon frequency. At low-frequency region, the 

plitting process is limited due to the lack of quantum state accept- 

ng the emitted phonon and thus the energy conservation can not 

e satisfied. In contrast, phase space of recombination process de- 

reases with the increase of frequency. Correspondingly, the cause 

s the lack of states that accept the combined phonon. In partic- 

lar for four-phonon scattering, phase space is dominated by the 

edistribution process. 

The ratio of scattering rate of four-phonon to three-phonon pro- 

ess is shown in Fig. 1 to reveal the importance of four-phonon 

cattering. In graphene, three-phonon scattering rate is larger than 

our-phonon, however, with the increase of atomic mass ratio, ra- 
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Fig. 1. The ratio of scattering rate of four-phonon to three-phonon, which is used 

to characterize the relative four-phonon scattering intensity. The horizon red line 

marks the equal proportion ratio. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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io of scattering rate of four-phonon to three phonon begins to be 

reater than 1 and shows an increasing trend. This means that 

our-phonon scattering contributes an increasing amount of ther- 

al resistance, as a result, when four-phonon scattering events 
ig. 2. Decomposed scattering rate of (a) graphene, (b) BN, (c) AlN, and (d) GaN. The lette

cattering event involving three acoustic phonons, and aaaa represents scattering involvin

3 
re involved, the thermal conductivity decreases 55%, 78%, 89% 

nd 94% for graphene, BN, AlN and GaN respectively compared 

ith the results including three-phonon scattering only. Compar- 

son between the mean free path with and without considering 

our-phonon scattering is shown in Fig. S8, it can be found that 

he mean free path is significantly shortened for all four materi- 

ls by four-phonon scattering, with GaN the most shortened. The 

bove analysis shows that with the increase of atomic mass ratio, 

he importance of four-phonon scattering increases, and the cor- 

esponding reduction in thermal conductivity due to four-phonon 

cattering becomes more pronounced. 

To gain a deeper insight into the phonon scattering mechanism, 

e decompose the phonon scattering rate into different channels 

n Fig. 2 . It is clear that the suppression of thermal conductiv- 

ty by four-phonon scattering is caused mostly by the scattering 

vent involving four acoustic phonons, and the increase in atomic 

ass ratio enhances aaaa channel. Feng has attributed the surpris- 

ngly high four acoustic phonons scattering in graphene to the fact 

hat the reflection symmetry allows significantly more four-phonon 

rocesses than three-phonon processes [8] . Here we have proved 

hat high four-phonon scattering rate also exist in other three pla- 

ar 2D materials, and as the atomic mass ratio raises, four acoustic 

honons scattering becomes increasingly important. 

.2. Normal scattering 

To explore the N and U scattering in those four materials, we 

ecompose the scattering rate into N and U processes, and the ra- 

io of the two is shown in Fig. 3 . In general, N scattering is dom-
r a represents for acoustic phonon, and o is optical phonon, e.g., aaa stands for the 

g four acoustic phonons. 
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Fig. 3. The ratio of scattering rate of N process to U process (N/U) in (a) three-phonon and (b) four-phonon scattering process, which is used to characterized the normal 

scatering intensity. Horizon red lines mark the equal proportion ratio. 

Fig. 4. Local phonon spectrum of graphene, BN, AlN, and GaN, and the black arrows 

show the trends of phonon branches. 
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nant in both three- and four-phonon scattering, and is more sig- 

ificant in three-phonon process. The reason is that, with the in- 

loving of an additional phonon, four-phonon scattering is easier to 

reate a phonon with a momentum beyond the first BZ, and thus 

eakens N process. Another interesting phenomenon is that with 

he sequence of graphene, BN, AlN, GaN (increasing of atomic ra- 

io), the N process gradually weakens, although it is still dominant. 

he reason can be found in the local phonon spectrum as shown in 

ig. 4 . The population of phonon obeys the Bose-Einstein distribu- 

ion [8] , and in this dependence, low frequency modes have much 

ore phonons than high frequency modes and they significantly 

ffect thermal transport properties. In graphene, the noteworthy 

trong N scattering has been attributed to its high Debye temper- 

ture, quadratic phonon band and diverging Grüneisen parameter 

42] , the latter two of which are common to planar 2D structures. 

s atomic ratio increases, the phonon branches are softened to 

ower frequency (as shown in Fig. 4 ), and the Debye temperature 

ecreases correspondingly. It means that, at typical temperatures 

f interest, the phonon distribution will be more in states away 

rom the � point, and the low-lying branches makes phonons have 

arger wave vectors and have more possibilities to scatter outside 

he first BZ, which leads to the weakening of N scattering event in 

hree- and four-phonon process. The Grüneisen parameter is calcu- 

ated and shown in Fig. S9. Grüneisen parameter diverges and gets 

 large magnitude near the BZ center, and larger Grüneisen param- 
4 
ter appears in AlN and GaN; however, the aforementioned low- 

ring of the phonon branches is more important, resulting in the 

eakening of relative N scattering intensity with the rising atomic 

ass ratio. 

In addition, given that the iterative solution is obtained, we 

an compare the strength of the N scattering through the devia- 

ion between the iterative solution and RTA solution. As indicated 

n Table 1 , three-phonon limited thermal conductivity obtained by 

he RTA method is 487.8 W/(mK), 242.2 W/(mK), 55.6 W/(mK), and 

1.0 W/(mK) at 300K for graphene, BN, AlN and GaN respectively, 

hich are 84%, 76%, 71%, and 50% lower than those obtained by 

terative method. Such large differences imply that N process play 

n important role in three-phonon scattering process and its ef- 

ect decreases with the atomic ratio. When four-phonon scattering 

s included in calculating the thermal conductivity, the deviations 

f the two results are -73%, -28%, -6% and -2% for graphene, BN, 

nd AlN, and GaN. The smaller deviations compared with those 

n three-phonon process stem from the joint contribution of two 

actors: (a) the importance of four-phonon scattering makes the 

reatment on it has significant impact on the result, and (b) the 

eaker relative N scattering intensity in four-phonon process, mak- 

ng the difference between the iterative and RTA solutions increas- 

ngly smaller. 

.3. Model approximation 

The fact that exact solutions to thermal conductivity have been 

btained allows us to test the efficacy of the two widely used 

pproaches: Callaway and Allen models [43–47] . As we have dis- 

ussed in Section 2 , N scattering does not directly provide ther- 

al resistance, an identical treatment of N and U process by RTA 

ethod would lead to an underestimation of thermal conductivity. 

allaway model is proposed to compensate for this underestima- 

ion [48] , by treating N and U scattering differently. Allen proposed 

 modified Callaway by using a different constraint condition im- 

osed by the N scattering [49] . More details about Callaway and 

llen models can be found in the Supporting Information. Hereby, 

e conduct an examination of the accuracy of the Callaway model 

nd Allen’s modified version with three- and four-phonon process, 

nd the results are shown in Table 1 . It can be found that in the

ramework of three-phonon scattering, thermal conductivity of all 

our materials is significantly underestimated by the RTA method, 

nd the Callaway and Allen models make up for part of the under- 

stimation. The deviations of the Callaway model from the itera- 
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[  
ive solution are -59%, -57%, -61%, -39% for graphene, BN, AlN, and 

aN, respectively, while that of Allen’s model are -38%, -20%, -32%, 

nd 36%, both models deviate less compared to the RTA, with the 

llen model having smaller deviations, although the accuracy can 

ot guaranteed. 

When four-phonon scattering is included, the underestimations 

y RTA are reduced. Similar to three-phonon limited thermal con- 

uctivity, the two models show better performance than RTA. In 

ddition, it is found that the two models’ deviations are less than 

% in BN, AlN, and GaN, implying that both the Callaway and Allen 

odels can guarantee the accuracy in those three materials. For 

raphene, the deviations of two models are still as large as -39% 

nd -42% respectively, although there is a significant improvement 

ver RTA method. The inaccurate approximation to graphene may 

tem from the strongest N scattering among those four materials. 

. Conclusion 

Based on first principles calculation combined BTE, four-phonon 

nd normal scattering in graphene, BN, AlN, and GaN are explored. 

ue to the increasingly important role of aaaa scattering channel, 

our-phonon scattering is found to have great effects on all the 

our materials, which results in reductions of three-phonon lim- 

ted thermal conductivity of 55%, 78%, 89% and 94%, respectively. 

 process is much stronger in three-phonon process than that in 

our-phonon process, which is attributed to the participation of an 

dditional phonon and it should exist in other materials as well. 

he increase of atomic mass ratio will enhance four-phonon scat- 

ering, but conversely, will weaken relative N scattering intensity. 

dditionally, we examined the accuracy of the Callaway model and 

llen’s modified version, it is found that neither model is appli- 

able in three-phonon limited process with strong N scattering. In 

he cases where four-phonon scattering is included, both models 

ould guarantee the accuracy of thermal conductivity in BN, AlN 

nd GaN, for graphene, however, N scattering is still too significant 

o be well described by the models. 
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