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Precise optical modeling of 
quantum dots for white light-
emitting diodes
Bin Xie1,2, Yanhua Cheng1, Junjie Hao2, Weicheng Shu1, Kai Wang2 & Xiaobing Luo1

Quantum dots (QDs)-based white light-emitting diodes (QDs-WLEDs) have been attracting numerous 
attentions in lighting and flat panel display applications, by virtue of their high luminous efficacy 
and excellent color rendering ability. However, QDs’ key optical parameters including scattering, 
absorption and anisotropy coefficients for optical modeling are still unclear, which are severely against 
the design and optimization of QDs-WLEDs. In this work, we proposed a new precise optical modeling 
approach towards QDs. Optical properties of QDs-polymer film were obtained for the first time, by 
combining double integrating sphere (DIS) system measurement with inverse adding doubling (IAD) 
algorithm calculation. The measured results show that the typical scattering, absorption and anisotropy 
coefficients of red emissive QDs are 2.9382 mm−1, 3.7000 mm−1 and 0.4918 for blue light, respectively, 
and 1.2490 mm−1, 0.6062 mm−1 and 0.5038 for red light, respectively. A Monte-Carlo ray-tracing model 
was set-up for validation. With a maximum deviation of 1.16%, the simulated values quantitatively 
agree with the experimental results. Therefore, our approach provides an effective way for optical 
properties measurement and precise optical modeling of QDs for QDs-WLEDs.

Colloidal quantum dots (QDs), as emerging nanocrystals light conversion materials, have been attracted more 
and more attentions in displays and lighting1–3. Unlike the bulk semiconductor material that has a fixed energy 
gap, the size range of QDs corresponds to the regime of quantum confinement for which electronic excitations 
feel the presence of the particle boundaries and respond to changes in the particle size by adjusting their energy 
spectra. This phenomenon is known as the quantum size effect. Quantum confinement leads to a collapse of the 
continuous energy bands of the bulk material into discrete ‘atomic’ energy levels. These well-separated QDs states 
can be labeled using atomic-like notations (1S, 1P, 1D, etc). Due to the strong quantum confinement in three 
dimensions, QDs’ emission spectra can be easily tuned from ultraviolet to infrared by changing their particle 
size and chemical composition, and their full width at half maximum (FWHM) is much narrower than that of 
conventional phosphor, leading to precise spectral control4–7. QDs can be excited by both photoluminescence 
and electroluminescence8–10. With these extraordinary characteristics, QDs-based white light-emitting diodes 
(QDs-WLEDs) possess high luminous efficacy as well as high color rendering ability11–13, making them promising 
candidates for next-generation solid-state lighting (SSL).

In one QDs-WLED, blue light is firstly emitted from GaN LED chip by means of electroluminescence (EL), 
and then irradiate on light conversion materials (e.g. phosphor, QDs). The mixture of transmitted blue light and 
long-wavelength light converted by QDs produces white light. Figure 1 shows the schematic of all the possible 
behaviors between the incident blue photons and the QDs. The blue photons may either be scattered by QDs 
(light path (3)), resulting in a change of their movement direction, or be absorbed by QDs (light path (2)), and 
their energy is converted into QDs emission light or transformed into heat energy. Besides, some of the blue 
photons may even pass the QDs layer without been affected at all (light path (1)). Moreover, photons emitted 
from QDs also will have the chance to be scattered by other QDs during transmission (Inset). Therefore, photons’ 
behaviors, including absorbing, remitting, scattering and transmitting, are very complicated in QDs-WLED, and 
it is necessary and critical to build up an optical model of QDs-WLED for further device optimization.

Generally, three key optical parameters, absorption coefficient, scattering coefficient and anisotropy coeffi-
cient, are utilized to characterize the behaviors of light absorption, conversion, scattering, and propagation in the 
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QDs layer. Previous studies have presented some optical models of QDs to simulate their optical performances in 
various optoelectronic devices14–17. In an approach, QDs are treated as dipoles and transfer matrix formalism11 is 
utilized to calculate the light out coupling and angular performance of QDs-based device14,15. While there are dif-
ficulties in directly measuring the QDs’ microcosmic parameters such as power dissipation density, wave vector 
and intrinsic quantum yield et al., making this method impractical to simulate real QDs-polymer film. In another 
approach, Monte-Carlo ray-trace method is performed to theoretically evaluate the performance of QDs-based 
materials16,17. Unlike the first method, this approach is conducted by inputting the absorption, PL spectra of QDs, 
the attenuation coefficient and QY of QDs, which are easier to be measured and are practical to QDs devices. In 
previous literatures, before processing the Monte-Carlo ray-trace simulation, some assumptions have to be made 
to conduct the calculation, including assuming that light scattering won’t occur in the QDs-polymer film due to 
the small size of QDs16,18,19. However, as far as we are concerned, this assumption is not always reasonable because 
the scattering coefficient of QDs-polymer film is non-negligible, especially when scattering particles are doped 
in20–23. Therefore, a more precise optical model of QDs, including coefficients of absorption, scattering and aniso-
tropy, need to be developed for QDs-WLED design and optimization.

Here, we reported on a precise optical model of QDs by combining double integrating spheres (DIS) system 
with inverse adding-doubling (IAD) algorithm. The proposed model takes into account all the fate of incident 
photons, including transmittance, absorption and scattering, which is compatible with the real situation. A series 
of QDs-polymer films samples with varying QDs concentrations were fabricated, and their transmittance, reflec-
tance and collimating transmittance were measured by the DIS system. Then their optical properties of scatter-
ing coefficient, absorption coefficient and anisotropy coefficient were calculated by the IAD algorithm. Finally, 
these parameters were adopted in Monte-Carlo ray-tracing model to conduct the simulation, and the ray-tracing 
results were compared with the experimental results to validate the feasibility of our model.

Experimental setup
Definitions.  As depicted in Fig. 1, the optical properties of QDs layer can be characterized by quantities as 
follows:

=u I1/ , (1)s s

= .u I1/ (2)a a

where the scattering coefficient µs and the absorption coefficient µa are defined as the reciprocal of the average 
free path between two scattering events (Is) or two absorption events (Ia), respectively. If the QDs layer is highly 
absorbing, the number of absorption events will be big, leading to a small average free path Ia, which yields a high 
absorption coefficient µa. Therefore, the higher the scattering or the absorption of a QDs layer is, the higher the 
respective coefficient would become.

In addition to the above two optical quantities, there is another parameter, single-scattering phase function 
p(θ), which characterizes the amount of light scattered at an angle θ from the incoming direction. It is often 
expressed in terms of the cosine of the scattering angle θ:

∫ ∫ω π θ= = = .
π −
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1

where dω is a differential solid angle, and v is the cosine of the scattering angle. The functional form of p(v) is 
usually unknown. While Jacques et al.24 and Yoon et al.25 have demonstrated that Henyey-Greenstein function 
approximates single-particle light scattering in human dermis and aorta at 633 nm. Therefore, this phase function 
is adopted in our calculation:
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The Henyey-Greenstein phase function depends on the anisotropy coefficient g, which is defined as:

Figure 1.  Schematic showing all the possible behaviors between incident blue photons and the QDs layer.
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The anisotropy coefficient g ranges from −1 to 1. When g = −1, scattering is all directed into reverse direction, 
when g = 1, scattering is all directed into forwarding direction, and when g = 0, scattering is equally probable in 
all directions. Using the physical sample thickness d, the coefficients µs and µa can be expressed by two dimen-
sionless quantities, the albedo a and the optical thickness τ26:

µ

µ µ

µ
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The albedo varies between 0 and 1, a = 0 indicates that no scattering occurs in the sample, while a = 1 indicates 
the absence of absorption. The optical thickness is defined as the product of the physical sample thickness and the 
sum of the scattering and the absorption coefficient. For a sample with the optical thickness τ = 1, there is a prob-
ability of e−1 = 37% that light will travel through it without being scattered or absorbed. In the following contents, 
the optical properties will be calculated in terms of three dimensionless quantities a, τ, and g.

Measurement setup.  The measurement of the optical properties of QDs samples can be achieved by the use 
of a double integrating sphere set-up, which is schematically depicted in Fig. 2. The QDs sample is placed between 
two integrating spheres so that it is situated at the exit port of the reflectance sphere (used to measure the reflec-
tance Pr), and on the entrance port of the transmittance sphere (used to measure the transmittance Pt). These 
two ports have identical sizes. Besides, the third integrating sphere (collimating transmittance sphere) is situated 
directly behind the transmittance sphere and is used to measure the light power Pct that is specularly transmitted 
through the sample. The entering light is incident perpendicularly upon the sample.

To measure the reflectance and the transmittance of a sample, the photomultiplier is usually used as detec-
tors27. Theoretically, the voltage Vδ recorded by a detector is proportional to the light power Pδ incident upon it:

= .δ δV KP (8)

where K is the constant proportionality, which depends on the detector characteristics. Due to the background 
signal V0, which occurs in all measurements and originates from noise in the system and the presence of stray 
light, expression (9) has to be expanded as follows:

= + .δ δV KP V (9)0

Therefore, the detected power can be expressed as:

= − .δ δP
K

V V1 ( ) (10)0

The constant K can be eliminated by using reference measurements which conducted with a single integrating 
sphere set-up. For a reference plate in the sample position, Pref can be determined by:

= − .P
K

V V1 ( ) (11)ref ref ref ,0

Therefore, by conducting the reference measurements, the relative values Vr%, Vt% and Vct% can be calculated 
as:

Figure 2.  Schematic of set-up of a double integrating sphere system.
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where the values Vr,0, Vt,0 and Vct,0 represent the background signals corresponding to the respective measure-
ments Vr, Vt and Vct.

Calculation theory.  As mentioned above, the final aim is to obtain the optical properties given by a, τ, and 
g, respectively. While the DIS measurements do not yield a, τ, and g directly, several measurement values that 
depend on the reflectance and the transmittance of the sample. Therefore, we have to find a connection between 
the optical properties and the measurement results. This can be done by the use of an appropriate model of radi-
ative transfer. One of these models is used in the Adding Doubling (AD) Method27, which was introduced by van 
de Hulst as one-dimensional numerical solution of the radiative transport equation. For given optical properties 
(albedo a, optical thickness τ, and anisotropy coefficient g), the reflection factors (Rd, Rcd, Rc) and the transmis-
sion factors (Td, Tcd, Tc) can be calculated by using this algorithm:

τ → .f a g R R R T T T: ( , , ) ( , , , , , ) (13)AD d cd c d cd c

where the reflection factor R and the transmission factor T are defined relative to the irradiance on the sample 
surface. They vary between 0 and 1 and denote the fraction of the total incident light that is reflected or transmit-
ted by the sample, respectively. For diffuse light incident upon the sample, the diffuse reflection (transmission) 
factor Rd (Td) denotes the fraction of light that is reflected (transmitted) diffusely by the sample. For collimated 
light incident upon the sample, the diffuse reflection (transmission) factor Rcd (Tcd) denotes the fraction of light 
that is reflected (transmitted) diffusely by the sample. The collimated reflection (transmission) factor Rc (Tc) 
denotes the fraction of light that is reflected (transmitted) specularly.

The AD method assumes that the reflection function R(ν, ν’) and transmission function T(ν, ν’) for light inci-
dent at an angle ν and exiting at an angle ν’ are known for one layer. For two similar and adjacent slabs, the light 
traveling from left to right across the boundaries 0, 1 and 2. The reflection and transmission of the two slabs can 
be derived from the results of the thin slab by using the AD equations28,29:

= = − ∗ ∗ +−R R T E R R R T R( ) , (14)02 20 1

= = − ∗ .−T T T E R R T( ) (15)02 20 1

where R01 and T01 are defined as the reflection and transmission operators for light incident upon boundary 0 
and moving towards boundary 1, respectively, and vice-versa. E is the unity matrix. Beginning with the starting 
thickness τstart, Rstart and Tstart, this doubling process repeatedly doubles the slab thickness by using the expressions 
(14) and (15), until the desired slab thickness τ has been reached. τstart has to be far smaller than the thickness of 
QDs sample d (τstart = 2−nd, n = 100~1000). After decided the τstart, the Rstart and Tstart can be determined by the 
initialization routine29. The resulting R and T are taken as the reflection matrix and the transmission matrix of 
the sample.

The correlation between the measurement data and the reflection/transmission factor can be calculated by the 
‘double integrating sphere function’:

→ .f R R R T T T V V V: ( , , , , , ) ( %, %, %) (16)DIS d cd c d cd c r t ct

With the expressions (13) and (16), we can deduce that, the measurement results Vr%, Vt% and Vct% can be 
predicted, if the optical properties a, τ and g of the sample are given, by a combination of the functions fAD and 
fDIS:

τ⋅ → .f f a g V V V: ( , , ) ( %, %, %) (17)DIS AD r t ct

In our case, we want to perform the calculation in the other direction. An iterative solution of the problem is 
given by the Inverse Adding Doubling (IAD) method, the function can be expressed as:

τ= ⋅ → .−f f f V V V a g( ) : ( %, %, %) ( , , ) (18)IAD DIS AD r t ct
1

Figure 3 shows the correlations between the three levels of quantities. Consequently, the procedure to obtain 
the optical properties of a sample by the use of DIS set-up and IAD algorithm is as follows:

	(1)	 Conduct the reference measurements to calibrate the measurement set-up.
	(2)	 Determine the three measurement values Vr%, Vt% and Vct% for the sample.
	(3)	 Calculate the optical properties a, τ and g with the IAD algorithm, by using the measurement data as the 

input of the program.
	(4)	 Calculate µa and µs from the returned values a and τ.

Results and Discussion
To verify the accuracy and effectiveness of our IAD algorithm, we performed an AD calculation for an ‘imaginary’ 
sample with the optical properties a = 0.8, τ = 1, g = 0.8 and a refractive index ns = 1.5. The sample was situated 
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between two ‘imaginary’ glasses with reflection factor Rg1 = Rg2 = 0.04 and transmission factor Tg1 = Tg2 = 0.96 
(ng = ns = 1.5). By using the AD function described in expression (13), we can get the ‘measurement values’

= . = . = . .V V V% 0 0454; % 0 3039; % 0 33911 (19)r t ct

In another direction, if we use above three values in equation (19) as the inputs for the IAD algorithm, we 
should obtain the optical properties a = 0.8, τ = 1, g = 0.8 as a result. As all three measurement values are known, 
all optical properties can be determined. Figure 4 shows the development of a and g during the iteration. In our 
IAD program, the routine terminates after 145 iteration steps, returning the values of a = 0.7999 and g = 0.8001. 
Therefore, our IAD algorithm has high accuracy and fast convergence speed.

Figure 3.  Correlations between the three levels of quantities.

Figure 4.  Development of (a) a and (b) g during the iteration.
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Without loss of generality, CdSe/ZnS core/shell QDs were used as the QDs-polymer film samples to validate 
our model. High-quality red-emissive QDs with an optimized peak wavelength of 626 nm were prepared by 
the Tri-n-Octylphosphine (TOP)-assisted successive ionic layer adsorption and reaction (SILAR) method11,30. 
According to our previous work31, adding QDs with a peak wavelength of 626 nm into phosphor-converted 
LEDs can greatly improve the color rendering index. Polymethyl methacrylate (PMMA) was chosen as the 
polymer matrix of QDs film samples. The QDs-PMMA film was prepared with the in-situ polymerization 
method32. Firstly 25 mL of MMA monomer and 0.2% wt/wt of azodiisobutyronitrile (AIBN) with respect to 
MMA were mixed in a three-neck flask and kept stirring until the AIBN was dissolved completely. Then 3 mL 
of MMA-AIBN solution was transfer to a cleaned centrifuge tube and 10 µL of QDs solution was added into 
the tube, and the mixture was homogeneously dispersed by the ultrasound treatment. After that, the tube was 
placed into the thermostatic water bath at 70 °C for 15 min until the mixture reached certain viscosity, and 
then cooled to temperature. Then, the viscous liquid was introduced into the tailored mould. The mould was 
placed in the vacuum oven at 45 °C and kept for 24 h. Finally, the resulting film was cut into circle and labeled 
as sample No. 1. Similarly, Nos 2–6 samples were prepared by adding 20, 30, 40, 50 and 60 µL of QDs solution 
into 3 mL of MMA-AIBN solution.

Figure 5(a) shows the high-resolution transmission electron microscope (HRTEM) images of the as-prepared 
QDs, from which the average diameter of QDs is measured as 6.8 nm with uniform size distribution. Figure 5(b) 
depicts the absorption and PL spectra of the CdSe core and CdSe/ZnS core-shell QDs. The narrow width at half 
maximum (FWHM) of near 31 nm from PL spectra has confirmed their uniform size distribution. Due to the 
TOP-assisted SILAR method, which removes the surface lattice imperfections by the surface ions re-dissolution 
and lattice re-arrangement during the whole ZnS shell formation process, the absolute PL quantum yields (PLQY) 
was enhanced from 45% to 69%. Figure 5(c) and (d) show the photographs of the QDs-PMMA film under day-
light and UV light, respectively. The as-prepared film samples maintain high transparency and uniformity, and 
the thickness of these films are measured as 0.41 to 0.44 mm.

In QDs-LEDs packaging, the main concerns are the absorption and scattering properties of QDs film for 
blue light emitted from the LED chip and converted red light emitted from itself. Therefore, in the DIS meas-
urement, two diode lasers with peak wavelength of 450 nm and 650 nm were used as the light sources. The 
optical power of these lasers is 20 mW, and their beam diameter is expanded to 8 mm to illuminate a sufficiently 
large area of QDs-PMMA film. Diameters of the reflectance, transmittance and collimating transmittance 

Figure 5.  (a) HRTEM images of the as-prepared CdSe/ZnS core-shell QDs. (b) Absorption and PL spectra 
of the CdSe core and CdSe/ZnS core-shell QDs. The inset shows the CdSe/ZnS QDs solution under UV light 
exposure. (c) and (d) show the photographs of the as-prepared QDs-PMMA film samples under daylight and 
UV light, respectively.
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spheres are 300 mm, 300 mm and 150 mm, respectively. Diameters of the apertures are 18 mm. For blue light 
(450 nm) excitation, the spectra of transmitted and reflected light are divided into two parts at 500 nm. Light 
with spectra from 380 nm to 500 nm is defined as unconverted blue light. For red light (650 nm) excitation, 
since no converted light is emitted from the QDs film, both the transmitted light and reflected light are sorted 
as the red light.

Figure 6 shows the measured reflectance and transmittance of QDs-PMMA samples based on blue and red 
light incidence. For simplicity, the reflectance, transmittance and collimating transmittance of the blue light and 
the red light are denoted as VRB, VTB, VCTB, VRR, VTR and VCTR. In the case of blue light incidence, VRB only takes a 
very small proportion (1.04%~1.45%), and it varies little against the QDs concentration. This is mainly because, 
during the light propagation, the backward scattered blue light is further absorbed by the QDs particles. It can be 
found that the QDs present remarkable high absorption and scattering for the blue light, and cause rapid decrease 
of VCTB and small reduction of VTB when the QDs concentration increased.

In the case of red light incidence, the results are quite different from those of blue light. The VRR and VTR 
increased with the increasing QDs concentration, which depicts that the increase of QDs particles leads to the 
enhancement of multiple scattering effects, and the backward scattered red light can emit out due to the weak 
absorption of the QDs. Consequently, the VCTR decreased with the increasing QDs concentration, because more 
and more light changed propagation direction.

According to the measured reflectance and transmittance values, the optical properties (µs, µa and g) of 
QDs-PMMA film samples are calculated by IAD algorithm, and the results are listed in Table 1. Measured results 
showed that the QDs present strong absorption for blue light, high reflection for converted red light, and an ani-
sotropic emission pattern of converted red light. It is seen that the scattering and absorption coefficients increase 
with the increasing QDs concentration, while the anisotropy coefficient changes slightly with the QDs concentra-
tion. Under the same QDs concentration, the scattering and absorption coefficients toward blue light incidence 
are large than that of red light incidence, which agrees with the measured results.

To validate our calculated optical properties of QDs film, an optical model of DIS system, which imitate the 
real DIS measurement system, was built up. The blue light (450 nm) is emitted out perpendicular to the laser 
aperture, with a beam divergence angle of 1.2 mrad. The inner surfaces of the three integrating spheres are coated 

Figure 6.  (a) Measured reflectance, transmittance and collimating transmittance of QDs-PMMA samples 
based on blue laser incidence. (b) Measured reflectance, transmittance and collimating transmittance of QDs-
PMMA samples based on red laser incidence.
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with a diffuse white material having optical properties of 11.1% absorption and 89.9% scattering, and are used as 
the receivers to collect the transmitted and reflected light.

The Monte Carlo method is applied for ray-tracing of the optical model. Total number of the traced rays is 
2 million, of which 1 million rays are the blue light and the other 1 million rays are the converted-red light. The 
threshold of light rays is 10–4. During the ray-tracing, the energy of light rays is calculated by optical power in 
watts. Light rays with single wavelength are used to represent the blue light and the converted-red light, which are 
set to be 450 nm and 626 nm, respectively. This simplification has been proven to be effective for the ray-tracing 
of light-emitting process33–37.

Figure 7(a) shows the comparisons between the ray-tracing and experimental results of reflectance, trans-
mittance and collimating transmittance for the incident blue light. It can be seen that the simulated VTB and 
VCTB values agree well with the experimental results, with a maximum deviation of 0.26%. The VRB values in the 
ray-tracing are slightly larger than those in the experiments, with a maximum deviation of 0.32%, respectively. 
This larger difference is mainly due to the relatively low value of VRB. Figure 7(b) and (c) show the comparisons of 
those results for the converted red light. Note that the collimating transmittance values of the converted red light 

Sample No.

µs (mm−1) µa (mm−1) g

450 nm 650 nm 450 nm 650 nm 450 nm 650 nm

1 1.3772 1.0691 1.4042 0.6564 0.5830 0.5555

2 1.7171 1.1117 2.2259 0.5543 0.5933 0.5737

3 2.1682 1.0585 2.8922 0.5890 0.5600 0.5297

4 2.9382 1.2490 3.7000 0.6062 0.4918 0.5038

5 4.7513 1.8611 4.2921 0.3839 0.5586 0.4455

6 8.0145 2.8908 5.5025 0.3146 0.6551 0.4828

Table 1.  Calculated optical properties of QDs-PMMA film samples toward blue and red light incidence.

Figure 7.  (a) Comparisons of simulated and experimental reflectance, transmittance and collimating 
transmittance of incident blue light. (b) Comparisons of simulated and experimental reflectance of converted 
red light. (c) Comparisons of simulated and experimental transmittance of converted red light.
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are not displayed here due to their weak signals that can hardly be collected by the photodetector. With a maxi-
mum deviation of 1.16%, the simulated values quantitatively agree with the experimental results. Therefore, the 
QDs optical properties can be measured and calculated precisely by our approach, which provides wide guidance 
for QDs-WLEDs design and fabrication.

Conclusion
In summary, this work provides a precise optical modeling approach towards QDs-polymer materials. The opti-
cal properties of QDs-PMMA film were measured by a double integrating sphere system and calculated by the 
inverse adding doubling algorithm. Measured results showed that the QDs present strong absorption for blue 
light, high reflection for converted red light, and an anisotropic emission pattern for both blue light and converted 
red light. Based on the calculated results, the absorption coefficient, scattering coefficient, and anisotropy coeffi-
cient were imported into the Monte-Carlo ray-tracing model for validation. With a maximum deviation of 1.16%, 
the simulated values quantitatively agree with the experimental results. Therefore, our optical modeling approach 
can obtain the necessary optical properties of QDs-polymer film, and the parameters can be utilized to conduct 
the ray-tracing simulation of QDs-based devices.

Data availability.  All data generated or analyzed during this study are included in this published article.
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