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A B S T R A C T   

Modeling of porous electrodes in supercapacitors (SCs) is rather important for both characterizing and improving 
the charging/discharging process of SCs, but the current models fail to balance accuracy, flexibility, and detail 
characterization of the electrode structure, especially the porosity and tortuosity. In this work, we develop a 
porous tortuous electrode (PTE) model consisting of a stack of multiple parallel plate capacitors with adjustable 
structural parameters for accurate modeling of SCs. By solving the equivalent circuit of the PTE model, the in-
fluence of the electrode structures on electric capacity and relaxation time are characterized with experimental 
validation, signifying the keys for accurate modeling of SCs as tortuosity and porosity and offering a general 
formula for describing the relaxation time of SCs. Based on the adjustable parameters in the PTE model, the 
spatial heterogeneity of the electrodes enables more intricate electrode structure designs. The PTE model fa-
cilitates various electrode designs and provides insight into the charging and discharging kinetics of porous 
electrodes.   

1. Introduction 

Supercapacitors (SCs) store energy through the inherent electrical 
double layers (EDLs) at the electrode-electrolyte interface when an 
external voltage is applied [1,2] and unlike the redox reaction-based 
batteries, can function at high charge/discharge rates in almost infin-
ite cycles [2–7]. The local microscopic structures of the electrodes play a 
crucial role in the energy density and charge/discharge rate of the SCs. 
On the one hand, the specific surface area of the electrode determines 
the amount of EDL that SCs can hold [8–10], and on the other hand the 
pore structure of the electrode affects the diffusion of ions and the 
charging/discharging time of SCs [10–13]. To optimize the performance 
of SCs through rational design, it is necessary to accurately define how 
the electrode morphology influences the relaxation time τ of ionic 
response under electrode potential Φ and the available capacitance Cs of 
the SCs [14–16]. 

Microscopically, people have employed molecular dynamics [17–21], 
lattice Boltzmann simulations, or classical density generalization theory 
[22–24], to depict the microscopic interaction of ions and nanopores on 
the electrode surfaces, but the predicted ns timescales are much smaller 
than the experimental 103 s timescales of the experimental SCs because 

their typical simulation domains are much smaller than the SC thickness 
(2L + 2H) [25]. On the contrary, the macroscale transmission line (TL) 
models were developed to fit the experimental data, but it is too coarse to 
reveal the microscopic mechanism of SCs. Moreover, the relaxation time in 
the TL model is calculated as τRC = λDL/D [26–29], where L is half the 
length of the electrode separation distance, D is the ionic diffusion coef-
ficient, and λD is the Debye length λD = κ− 1 = (εkBT/2e2ρb)− 1/2 with ε the 
electrolyte permittivity, e the elementary charge, kB the Boltzmann con-
stant, T the cell temperature, and 2ρb the bulk ion number density [30,31]. 
Substituting the typical experimental parameters in Ref. [32], the relaxa-
tion time in the TL model approximates 10− 4 s, which is almost 5 orders of 
magnitude smaller than the experimental relaxation time. To remedy the 
shortcomings of the TL model, Lian et al. developed the microscopic 
stack-electrode (SE) model and SE circuit [32] with many no-thickness 
parallel stacked electrodes to establish the relationship between the pa-
rameters in the TL models and electrode structures (pore size h, thickness 
H, etc.), and obtained the relaxation time that is at the same order of the 
experimental relaxation time as τn ~ (2 + 0.75H/L)nτRC where n is the 
number of branches. Through their SE model, the slow charging and dis-
charging dynamics in large capacitors could be explained, and the quan-
titative mechanism under the cyclic voltammetry (CV) is clarified [33]. 
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Actually, porous electrodes are frequently used in capacitors [34], 
lithium/sodium batteries [35,36], and fuel cells [37] among others, due 
to the large specific surface area supplied by their microporous struc-
ture. Some key statistics describing the microstructure of the electrode 
mainly include porosity, distribution of pore size, and tortuosity [38], 
etc. The porosity P is the ratio of the pore volume to the total volume of 
the electrode (P ≤ 1) as shown in Fig. 1(a). The tortuosity, which is a 
crucial factor in correctly describing ion diffusion behavior, is defined as 
the ratio between the average travel distance and the macroscopic dis-
tance in porous electrodes (γ ≥ 1). Nevertheless, the lack of practical 
microstructure parameters of the electrode renders the SE model inac-
curate. Hence, detailed characterization of electrode microstructure 
with more parameters is still lacking for accurate modeling of porous 
electrodes in SCs yet. 

To tackle the above question, we develop a porous tortuous electrode 
(PTE) model of SCs by considering tortuosity γ and porosity P, whose 
influences are found to be dominant for the accurate modeling of SCs’ 
performance. The influences of the electrodes’ tortuosity and porosity 
on electric capacity and relaxation time are characterized. The PTE 
model is validated with previous experiments with higher accuracy than 
the SE model. Unlike the SE model, the PTE model allows for designing 
more complex spatial heterogeneity for electrodes to achieve superior 
performance. The PTE model enables the more general electrode design 
and the accurate prediction of the charging and discharging kinetics in 
SCs. 

2. Porous tortuous electrode (PTE) model 

The PTE model assumes that the contact surface between the elec-
trode and the electrolyte is large enough to neglect the edge effect and to 
focus on the ion distribution perpendicular to the contact surface. Ac-
cording to Fig. 1(b), the capacitor cathode and anode are composed of n 
flat electrodes that can be permeated by the electrolyte. The distance 

between the i-th flat electrode and the (i+1)-th flat electrode is deter-
mined by the pore size hi (i = {1, 2, …, n− 1} represent the i-th intervals 
close to the electrolytic cell and the spatial information of branch). By 
definition of porosity, we can get the average porosity Pavg =

∑
hi/H and 

n = PavgH/havg + 1 (the subscript avg represents the arithmetic mean). 
The electrode material is designed as a tortuous porous structure con-
sisting of solid particles, which limits the diffusion coefficient of ions in 
the electrode as Deff,i = DbulkPi/γi, where Deff and Dbulk are effective and 
bulk diffusion coefficients, respectively. The model can be numerically 
solved by the Poisson-Nernst-Planck (PNP) equations [39,40], which are 
relatively complicated and cumbersome. Instead, it could be alterna-
tively solved by calculating the equivalent circuit of the PTE model 
[Fig. 1(c)], in which the microphysical quantities are converted into 
resistance and capacitance as 

C=Aεκ (1a)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ri =
hi

Aεκ2Deff,i
=

hiγi

havgPi
×

havg

Aεκ2D
=

1
Ki

× R

R′ =
2L

Aεκ2D

(1b)  

where A is the electrode surface area. It is worth noting that the 
capacitance of the two outermost capacitors in the circuit is half that of 
the other capacitors because they only have one side to interact with 
electrolytes [32]. For the circuit on the right side of Fig. 1(c) by Q = CΦ 
we could get: 
⎧
⎪⎪⎨

⎪⎪⎩

I1 = Q̇1 = 2CΔΦ̇1
⋮
In− 1 = Q̇n− 1 = 2CΔΦ̇n− 1
In = Q̇n = CΔΦ̇n

(2) 

In the scope of this work, we consider capacitance C as a constant 

Fig. 1. (a) Schematic diagram of a supercapacitor, containing two symmetrical porous electrodes and an electrolyte cell. (b) Model sketch, the electrolytic cell length 
2L. Two electrodes of thickness H are both considered to be composed of n ≥ 1 flat sheets electrode and the interval between the i-th and the (i+1)-th flat sheets 
electrode is hi (1 ≤ i ≤ n− 1). (c) The equivalent electronic circuit of the model with a single side connected in parallel by n capacitors, where Ri ~ hi and R′ ~ 2L. (d) 
As a function of voltage Φ(t) - t. (Blue is the constant potential, and red is the sawtooth potential change that is used in CV experiments.). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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value. The currents in the different branches are related by Kirchhoff’s 
law: 
⎧
⎪⎪⎨

⎪⎪⎩

I = I1 + I12
⋮
I(n− 2)(n− 1) = I(n− 1) + I(n− 1)n
I(n− 1)n = In

(3) 

The currents through the resistors follow Ohm’s law: 
⎧
⎪⎪⎨

⎪⎪⎩

IR′ = 2[Φ(t) − ΔΦ1(t)]
I12R1 = ΔΦ1(t) − ΔΦ2(t)
⋮
I(n− 1)nRn− 1 = ΔΦn− 1(t) − ΔΦn(t)

(4) 

Combining Eqs. (2)–(4), we get n coupled ordinary differential 
equations:   

We then rewrite Eq. (5) in the matrix form 
⎛

⎜
⎜
⎝

ΔΦ̇1(t)
ΔΦ̇2(t)

⋮
ΔΦ̇n(t)

⎞

⎟
⎟
⎠=

Φ(t)
R′C

⎛

⎜
⎜
⎝

1
0
⋮
0

⎞

⎟
⎟
⎠

−
1

2RC

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1 +
havg

L
− K1

− K1 K1 +K2 − K2

⋱ ⋱ ⋱

− Kn− 2 Kn− 2 +Kn− 1 − Kn− 1

− 2Kn− 1 2Kn− 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

ΔΦ1(t)
ΔΦ2(t)

⋮
ΔΦn(t)

⎞

⎟
⎟
⎠

which can be rewritten as ΔΦ̇ = V − MΔΦ with ΔΦ =

[ΔΦ1,ΔΦ2,⋯,ΔΦn]T, V = [Φ(t)/R’C]e1 ∈ ℝn×1, e1 = [1,0,0,⋯,0]T and M 
∈ ℝn×n is a tridiagonal matrix [32]. Combining the above differential 
equations and the initial condition ΔΦ(t = 0) = 0, the solution is 

ΔΦ(t)=
e1

R′C

∫ t

0
Φ(s)exp[(s − t)M] ds (6)  

By eigenvalue decomposition of M as M = UΛU− 1 with U the unitary 
matrix and Λ = diag(λ1, λ2, ⋯, λn) the eigenvalue matrix, we can rewrite 
Eq. (6) as 

ΔΦ(t)=U
∫ t

0
exp[(s − t)Λ]U− 1V(s)ds (7)  

In the following, we discuss the integration results for different forms of 
supply voltage such as constant voltage charging (blue line) and 
sawtooth CV scan (red line) in Fig. 1(d). 

Case 1. constant voltage charging: 
For this case, the power supply voltage is constant as 

Φ(t)=Φ0(t> 0), (8) 

so V = [Φ0/R’C]e1. Integrating Eq. (7) gives: 

ΔΦ(t)=
Φ0

R′C
U[1 − exp(− tΛ)]Λ− 1U− 1e1. (9) 

As described in Eq. (9), each voltage at branch capacitance drops 
exponentially with time and has different relaxation times 1/λi, which 
helps us subsequently to solve the overall relaxation time of the PTE 
model. By inserting Eq. (9) into Eq. (2), we can obtain the current in each 
branch as 

I(t)=
Φ0

R′ SU exp(− tΛ)U− 1e1 and S=

⎛

⎜
⎜
⎝

2
2

⋱
1

⎞

⎟
⎟
⎠ (10)   

Case 2. sawtooth CV scan: 

Let u be the number of cycle periods, for a periodic sawtooth po-
tential, it can be expressed as: 

Φ(t)=Φ0(1 − |ωt − 2u − 1|) (11) 

We perform a Fourier series expansion of Φ(t) to make it continuous 
and integrable: 

Φ(t)=Φ0

[
1
2
−

4
π2

∑∞

m=1,3,5,⋯

cos(mπωt)
m2

]

(12) 

By inserting Eq. (12) into Eq. (7), we find: 

ΔΦ(t)=
Φ0

R′C
Udiag(α1,⋯, αn)U− 1e1 (13)  

where αi is defined as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αi ≡ α0
i −

4
π2

∑∞

m=1,3,5,⋯

αcos
i

m2

α0
i ≡

1 − exp(− λit)
2λi

αcos
i ≡

∫ t

0
cos(mπωs)exp[(s − t)λi] ds

(14) 

Here, αi
0 stems from the term 1/2 in Eq. (12). For the solution of αi

cos: 

αcos
i =

∫ t

0
cos(mπωs)exp[(s − t)λi] ds

=
1

mπω

∫ t

0
exp[(s − t)λi] dsin(mπωs)

=
1

mπω

{

sin(mπωt) −
∫ t

0
sin(mπωs) dexp[(s − t)λi]

}

=
1

mπω

{

sin(mπωt)+
λi

mπω

∫ t

0
exp[(s − t)λi] dcos(mπωs)

}

=
1

mπω

{

sin(mπωt)+
λi

mπω
[
cos(mπωt) − exp(− λit) − λiαcos

i

]
}

Thus, we obtain the final solution of αi
cos as: 

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΔΦ̇1(t) =
I − I12

2C
=

Φ(t)
R′C

−

(
1

R′C
+

1
2R1C

)

ΔΦ1(t) −
ΔΦ2(t)
2R1C

⋮

ΔΦ̇n− 1(t) =
I(n− 2)(n− 1) − I(n− 1)n

2C
=

Φn− 2(t)
2Rn− 2C

−

(
1

2Rn− 2C
+

1
2Rn− 1C

)

ΔΦn− 1(t) −
ΔΦn(t)
2Rn− 1C

ΔΦ̇n(t) =
In

C
=

Φn− 1(t)
Rn− 1C

−
Φn(t)
Rn− 1C

(5)   
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αcos
i =

(mπω)sin(mπωt) + λi cos(mπωt) − λi exp(− λit)
λ2

i + (mπω)
2 (15) 

We ignore the transient response in Eq. (14) and Eq. (15) when t is 
large enough and obtain 

αi =
1

2λi
−

4
π2

∑∞

m=1,3,5,⋯

1
m2

(mπω)sin(mπωt) + λi cos(mπωt)
λ2

i + (mπω)
2 (16) 

Inserting Eq. (16) into Eq. (2), we get 

I(t)=Φ0

R′ SUdiag(β1,⋯, βn)U− 1e1 (17) 

with βi given by 

βi =
dαi

dt
=

4
π2

∑∞

m=1,3,5,⋯

1
m2

λi(mπω)sin(mπωt) − (mπω)
2cos(mπωt)

λ2
i + (mπω)

2 (18) 

So the dry circuit current is J(t) =
∑

Ii(t). Here, we mainly focus on 
the effect of microscopic parameters Pi and γi of electrodes on SCs, which 
haven’t been investigated before. Further, by adjusting different func-
tions of the supply potential Φ(t), we examine how the PTE model re-
sponds to various electrochemical tests, such as the constant potential 
technique and CV test, and analyze the correlation between electrode 
parameters and SC performance. 

We validated the PTE model with experimental results in Ref. [41]. We 
extract the electrode parameters from the experimental results as cell 
dimension H = 40 μm and 2L = 150 μm. The electrolyte is 0.5 M Na2SO4 at 
room temperature, the bulk diffusion coefficient is Dbulk = 1.23 × 10− 9 

m2/s, and the Debye length is λD = κ− 1 = 0.25 nm. The selection of hi is 
constructed according to the pore size distribution obtained from the N2 
adsorption/desorption test of Ref. [41]. The cumulative pore capacity is 
Vpore = 2.8 cm3/g [41]and the corresponding porosity is P =Vporeρ = 0.52. 
The Bruggeman’s correlation is widely employed in engineering for 
roughly estimating tortuosity due to the inherent difficulty in directly 

accessing tortuosity. So the tortuosity of the electrode is estimated by 
Bruggeman’s correlation as γ = P− 0.5 ≈ 1.39 [42,43]. With a constant 
voltage as Φ(t) = Φ0(t > 0) = 0.5 V, the PTE model predicted CV scan 
curves at the corresponding frequency ω are shown in Fig. 2. The curves 
predicted by the PTE match the curve of the capacitor’s ideal voltammetry, 
which is rectangular at low scan frequencies and becomes lens-shape at 
high frequencies due to the ion diffusion limitation [8]. It is seen in Fig. 2 
that the PTE predictions (red lines) agree well with the experiments 
(symbols), while there is a large discrepancy between the SE predictions 
(orange lines) and the experiments, especially at the low frequency. The 
discrepancy between the two predictions demonstrates that the porosity 
and tortuosity play an important role in the model accuracy of energy 
density (area enclosed by the curve) and relaxation time (shape of the 
curve). 

3. Results and discussions 

3.1. Relaxation time 

The power density of SC is commonly characterized by the charge 
relaxation time τ. Here we construct a quantitative relationship between 
relaxation times and electrode parameters in the PTE model. The overall 
equilibrium of the capacitor relies on the equilibrium of its individual 
branches according to Eq. (9). Fig. 3(a) illustrates the temporal change of 
normalized charge in each electrode branch during constant voltage 
charging. Initially, the capacitor primarily charges in the vicinity of the 
electrolyte and gradually extends towards the outer layer. Notably, the 
overall change in the capacitor’s charge aligns with the change observed in 
the i = 41 branch, which possesses the smallest characteristic value [see 
Fig. 3(b)]. Stated differently, the relaxation time of the entire capacitor is 
determined by the longest relaxation time among its branches: τ = 1/min 
(λi). Now the problem becomes solving the relationship between the 
minimum eigenvalues and the electrode parameters. 

Fig. 2. Validation of the PTE model (red lines: Pi = 0.52, γi = 1.39) with experiments in Ref. [41] (symbols) and the SE model (orange lines: Influences of porosity 
and tortuosity are ignored as Pi = 1.0, γi = 1.0) with Φ0 = 0.5 V at different frequencies ω. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.) 
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For simplicity, let’s assume hi ≡ havg, Pi ≡ P, and γi ≡ γ, implying Ki =

P/γ. Consequently, the characteristic matrix M of the electrode model 
can be represented as follows: 

M=
1

2RC

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K +
h
L

− K

− K 2K − K

⋱ ⋱ ⋱

− K 2K K

− 2K 2K

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(n − 1)L
PHR′C

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

P
γ
+

PH
(n − 1)L

−
P
γ

−
P
γ

2
P
γ

−
P
γ

⋱ ⋱ ⋱

−
P
γ

2
P
γ

−
P
γ

− 2
P
γ

2
P
γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
(n − 1)L
2HτRC

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
γ
+

H
(n − 1)L

−
1
γ

−
1
γ

2
1
γ

−
1
γ

⋱ ⋱ ⋱

−
1
γ

2
1
γ

−
1
γ

− 2
1
γ

2
1
γ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(19) 

By solving the eigenvalues of Eq. (19), we can obtain the relaxation 
time τ, which is influenced by τRC, H/L, n, and γ. To quantitatively 
illustrate the influence, we plotted the relaxation time as a function of 
each parameter in Fig. 4(a–d). It is seen that there is a good linear 
relationship between τ and τRC, H/L, n, γ respectively. So τ can be 
accurately approximated as a linear combination of τRC, H/L, n, γ: 

τ = τRC

(

aγ
H
L

n+ b1γ
H
L
+ b2γn+ b3

H
L

n+ c1γ + c2
H
L
+ c3n+ d

)

(20)  

when H/L → 0, implying R/R’ → 0, all branch capacitors are connected 
in parallel, giving a total capacitance Ctotal = (2n-1)C. Inserting this into 
τ = R’Ctotal/2, we find: τ = (2n-1)R’C/2 = (2n-1)τRC, resulting in b2 = c1 
= 0, c3 = 2, d = − 1 when compared with Eq. (21). Thus Eq. (21) is 
simplified as: 

τ
τRC

=

(

a
H
L

n+ b1
H
L

)

γ +
(

b3
H
L

n+ c2
H
L
+ 2n − 1

)

= coeffk ⋅ γ + coeffb (21) 

By performing a 3-dimensional linear fitting of the calculated data in 

Fig. 4(e and f), we can obtain 

τ
τRC

= 0.8γ
H
L

n − 0.81γ
H
L
− 0.05

H
L

n − 0.1
H
L
+ 2n + 1 (22) 

For general SCs, Eq. (22) can be simplified as τ ~ (2 + 0.8γH/L- 
0.05H/L)nτRC ≈ (2 + 0.8γH/L-0.05H/L)(PH/h)τRC due to n » 1. 

We applied Eq. (22) to the experiment to test the accuracy. Here we 
consider the setup in Ref. [44]. For the overall dimensions, the thickness 
of the carbon electrode H = 0.5 mm and separator 2L = 2.2 mm, so H/L 
= 0.45. The electrode is submerged in 1 M NaCl solution at room tem-
perature with bulk diffusion coefficient Dbulk = 1.6 × 10− 9 m2/s and 
Debye length κ− 1 = 0.3 mm, thus RC relaxation time is τRC = 2.06 ×
10− 4 s. For the microstructure of the electrode, porosity Pi = 0.65, mass 
density ρ = 5.8 × 105 g/m3, and Brunauer-Emmett-Teller area ABET =

1330 m2/g from nitrogen adsorption, thus average pore size is estimated 
as havg = P/(ρABET) = 0.84 nm and n = PH/havg + 1 = 3.87 × 105. The 
tortuosity of the electrode is estimated using Bruggeman’s correlation as 
γi = Pi

− 0.5 = 1.24 [42,43,45,46]. With Eq. (22), we find τ = 193 s, which 
gets the same magnitude as the relaxation time τfit = 200 s obtained by 
fitting the experimental data [32,44]. Such small errors are acceptable 
for guiding structural design. 

3.2. Capacitance 

The energy density of SC can be characterized by the capacitance 
value Cs. The CV scanning results at different parameters and scanning 
frequencies [Fig. 5] are computed and subsequently converted into the 
electrode’s equivalent surface capacitance Cs 

Cs =

∮
J(t)

2Φ2
0ω

dΦ. (23) 

For the effect of tortuosity, the equivalent surface capacitance of 
each curve is equal at low scan frequencies (τω → 0) as shown in Fig. 5 
(a). The tortuosity does not affect parameter n, which implies that 
varying the tortuosity will not impact the number of EDLs that can be 
formed. Therefore, it does not affect the maximum energy density and 
maximum surface capacitance Cs,max = (2n-1)C. At high frequencies, SCs 
with small tortuosity γi electrodes can maintain larger equivalent surface 
capacitance Cs, which depends on the smaller relaxation time τ in faster 
ions migration as Deff,i = DbulkPi/γi. 

The effect of porosity P is more complex than that of tortuosity γ. As 
shown in Fig. 5(b), for the energy density, the maximum surface 
capacitance is proportional to porosity P [Fig. 5(b-c)], whi ch can be 
explained by Cs,max = (2n-1)C = (2PavgH/havg + 1)C. Increasing porosity 
allows the electrode to create a greater number of EDLs and store a 
higher amount of energy. However, this advantage often comes at the 
cost of extended relaxation time. Fortunately, larger porosity also per-
mits faster ion migration rates, thus the charge/discharge rate is affected 
by the combination of layer number change and ions diffusion change 

Fig. 3. (a) Normalized charge of each branch of the electrode’s constant voltage charging (Calculate by Eq. (2) and Eq. (10)) with Φ0 = 0.5 V, hi = 10 nm, H/L = 1, H 
= 1 μm, Pi = 0.6, and γi = 1.4. (b) Eigenvalue of each branch in (a). The asterisk denotes the smallest eigenvalue. 
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due to the change of P. 
According to Eq. (22), the scan rate ω is rescaled by the relaxation 

time τ of the electrode model response step potential and the variation of 
the dimensionless surface capacitance can be represented as the same 
curve [Fig. 5(d)]: 

C∗
s =

1
1 + 6.07(ωτ)1.4 (24) 

Inserting Eq. (24) into Cs = C* sCs,max, we get 

Cs =
(2n − 1)C

1 + 6.07(ωτ)1.4 (25) 

Combining Eq. (22), Eq. (25) and n = PavgH/havg + 1 gives Cs ∝ AP/ 
[1 + B(ωP)1.4]. Therefore, the resulting larger Cs for electrodes with 
small porosity at ω ≥ 2.5 × 103 Hz in Fig. 5(c) can be explained by the 
enhanced influence of relaxation time at higher frequencies compared to 
lower frequencies. 

3.3. Inhomogeneous electrode design 

Although the majority of electrodes can be categorized as homoge-
neous electrodes, the present PTE model is also applicable for electrodes 

with inhomogeneous spatial distribution, which have been proven to be 
an effective way to improve SCs performance [47,48]. Without loss of 
generality, we discuss a simple case with a stepwise spatial distribution 
of pore size or porosity characterized by coefficient r as shown in Fig. 6 
(a). As shown in Fig. 6(b), the relaxation time τ and r have a negative 
linear/non-monotonic correlation in the stepwise distribution of hi/Pi, 
respectively, which is consistent with Ref. [49]. This phenomenon can 
be explained by the resistance Ri. The resistance Ri on the inner side is 
smaller as the electrode near the electrolyte side has a smaller pore size 
and larger porosity. As a result, the bulk ions can diffuse into the elec-
trode more quickly than the uniform distribution of electrodes during 
charging and discharging. However, the effect of porosity distribution is 
different from that of pore size distribution. In stepwise spatial distri-
bution of Pi, the total impedance rises with the increase of |r|, which is 
noteworthy when Pavg is large. Therefore, the change of relaxation time 
in Fig. 6(b) is non-monotonic and asymmetric due to the combined ef-
fects of both actions. The CV tests in Fig. 6(c and d) show that the 
relaxation time of the electrode with the pore size hi stepwise distribu-
tion at r = 0.8 is reduced by 20% and the Cs*-ω curve of the designed 
electrode is between the initial curve and the curve obtained from Eq. 
(24). 

Fig. 4. (a–d) Variation of relaxation time τ [calculated by τ = 1/min(λi)] with RC relaxation time τRC, number of branches n, ratio H/L, tortuosity γ under different 
conditions. (e–f) The 3-dimensional fit of coeffk and coeffb, where points are data points and faces are fitted surfaces. The goodness-of-fit of coeffk and coeffb, 
respectively, are Rk

2 = 0.999 and Rb
2 = 0.997. 
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4. Conclusions and outlooks 

In summary, we built the PTE model to investigate the effect of 
nanopore structure on the SCs. The corresponding equivalent circuit 
models were constructed by the structural parameters of the electrodes 
including thickness H, pore size hi, porosity Pi, and tortuosity γi. We 
create a link between the capacitor’s energy density, charge/discharge 

rate and the electrode parameters by concentrating on the impacts of the 
electrodes’ porosity and tortuosity on the EDL capacitors. The important 
role of porosity and tortuosity in the prediction model and the physical 
mechanism of their influence are revealed. The relaxation time for a 
general capacitor with uniform electrodes can be expressed as τ ~ (2 +
0.8γH/L - 0.05H/L)(PH/h)τRC. The accuracy of the circuit model was 
verified in the relaxation time evaluation and cyclic voltammetry results 

Fig. 5. CV scan of electrodes with Φ0 = 0.01 V, hi = 10 nm, H/L = 1, H = 2 μm. (a) Pi = 0.6 with different γi. (b) CV scan of electrodes with different porosity and γi =

2, ω = 400 Hz. (c) The equivalent surface capacitance of the electrodes in (b) at different scanning frequencies. (d) The dimensionless surface capacitance of the 
electrode Cs* = Cs/Cs,max in (c) varies with τω (τ is calculated by Eq. (22)). 

Fig. 6. (a) Schematic diagram of the stepwise spatial distribution of hi or Pi where hi = (1-r)havg at i = 1, 2, …, (n-1)/2 and hi = (1+r)havg at i = (n+1)/2, …, n-1. (b) 
Effect of changing r in stepwise distribution on relaxation time (Bruggeman’s correlation was applied to estimate the tortuosity). (c) Dimensionless current density 
response of stepwise distributed electrodes in cyclic voltammetry with variable frequency. (d) Change of Cs* with frequency in hi stepwise distribution with r = 0.8. 
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of recent experimental data. Additionally, the PTE model with more 
practical parameters enables the spatial pore size/porosity heterogene-
ity design of electrode structures with higher performance of reduced 
relaxation time by ~20% at r = 0.8. The PTE model facilitates various 
electrode designs and provides insight into the charging and discharging 
kinetics of porous electrodes, but more work can be done to further 
improve the accuracy and generality. For instance, the capacitance C in 
this study is assumed as constant, which can be influenced by the voltage 
as C = Aεκcosh(Φ/2). When the voltage is low, the influence is minimal, 
but the corresponding influence may not be ignored at high voltage 
although Eq. (23) still maintain. Other limitations like capacitor’s ion 
depletion [50], thermal effect [51], and EDL overlap effect [52] that 
affects diffusion resistance and energy density are also worthy of further 
discussion. The solutions to these issues may require multi-scale models 
to combine the present PTE model, PNP model, and molecular 
dynamics. 
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[22] S. Babel, M. Eikerling, H. Löwen, Impedance resonance in narrow confinement, 
J. Phys. Chem. C 122 (2018) 21724–21734, https://doi.org/10.1021/acs. 
jpcc.8b05559. 

[23] D. Jiang, J. Wu, Microscopic insights into the electrochemical behavior of 
nonaqueous electrolytes in electric double-layer capacitors, J. Phys. Chem. Lett. 4 
(2013) 1260–1267, https://doi.org/10.1021/jz4002967. 

[24] J. Jiang, D. Cao, D. Jiang, J. Wu, Kinetic charging inversion in ionic liquid electric 
double layers, J. Phys. Chem. Lett. 5 (2014) 2195–2200, https://doi.org/10.1021/ 
jz5009533. 
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