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Abstract Minipump is widely used in microfluidics sys-

tem, active cooling system, etc. But building a high effi-

ciency minipump is still a challenging problem. In this

paper, a systematic method was developed to design,

characterize and optimize a particular mechanical mini-

pump. The optimization work was conducted to cope with

the conflict between pressure head and hydraulic efficiency

by an improved back-propagation neural network (BPNN)

with the non-dominated sorting genetic algorithm-II

(NSGA-II). The improved BPNN was utilized to predicate

hydraulic performance and, moreover, was modified to

improve the prediction accuracy. The NSGA-II was pro-

cessed for minipump multi-objective optimization which is

dominated by four impeller dimensions. During hydraulic

optimization, the processing feasibility was also taken into

consideration. Experiments were conducted to validate the

above optimization methods. It was proved that the opti-

mized minipump was improved by about 24 % in pressure

head and 4.75 % in hydraulic efficiency compared to the

original designed prototype. Meanwhile, the sensitivity test

was used to analyze the influence of the four impeller

dimensions. It was found that the blade outlet angle b2 and
the impeller inlet diameter D0 significantly influence the

pressure head H and the hydraulic efficiency g, respec-
tively. Detailed internal flow fields showed that the opti-

mum model can relieve the impeller wake and improve

both the pressure distribution and flow orientation.

Keywords Minipump � Optimization � Back-
propagation neural network � Non-dominated sorting

genetic algorithm-II

1 Introduction

Over the last decade, the microfluidic systems have been

developing at an exponential rate and widely applied in

chemical analysis [1], polymer chain reaction [2], micro-

electronics cooling [3] and other fields. The micropump is

the essential actuation component in microfluidic systems.

It can pump, control or otherwise manipulate small fluid

volumes against backpressure through the system [4].

A variety of micro- or minipumps have been developed

based on various principles [5–10]. Mostly, the motivation

of the pump development focuses on the pumping real-

ization to adapt with the microfluidic components, opera-

tion ambient, and moreover the micro processing method.

The performance effectiveness analysis and optimization,

by contrast, play second fiddle. Several numerical model-

ing and optimization designs were presented according to

the pumping mechanism. Da Silva et al. [11] proposed a

viscous pump with a cylindrical rotor set in the channel

housing. By comparing sets of channel dimensions and the

rotor eccentricity, the optimum model was obtained to

maximize the mass flow rate per unit of shaft power con-

sumption. Choi et al. [12] developed a dual rotating

cylinders pump. By taking the advantage of the sequential

metamodel-based optimization algorithm, the optimum

design variables were automatically determined within the

specific constraint; meanwhile, the relation between the

objectives was revealed.

We proposed a mechanical centrifugal minipump with a

2 L/min flow rate, 90 kPa pressure head at 22,000 r/min
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[13]. Figure 1 illustrates the components of the minipump.

It generally consists of an impeller, a volute and a per-

manent magnet motor. Though this centrifugal minipump

gets the similar form with the conventional pump, the

hydraulic performance in conventional machine can be

rarely referred to in minisize. In our previous work [13], it

was demonstrated that the minipump equipped with open

impeller could generate higher pressure head than that with

the closed impeller while presenting a slightly efficiency

drop. At the case of minisize, the leakage and disk friction

of the closed impeller accounted for a large proportion in

the overall power loss. Hence, to investigate the charac-

teristics of geometry and flow in minisize is necessary.

In this paper, our study focuses on improving the

hydraulic performance upon the open impeller model. This

paper applied back-propagation neural network (BPNN) as

a surrogate model to make prediction for the hydraulic

performance, and non-dominated sorting genetic algo-

rithm-II (NSGA-II) to optimize the objectives of pressure

head and efficiency. Different from the existed works [14–

17], to obtain a satisfied prediction accuracy overcoming

inadequate training sample, this paper modified the stan-

dard BP network by combing with an enhanced simulated

annealing (ESA) algorithm. The global sensitivity test was

conducted to assess the influence of every decision variable

upon the objective functions. Detailed operating curves and

internal flow fields between the reference and optimum

minipumps are analyzed.

2 Optimization statement

The overall optimization procedure can be generally

described as follow: firstly, an original minipump is

designed according to the partial emission pump theory.

Secondly, the optimization space for four impeller vari-

ables is determined. After that, a training sample is estab-

lished to construct the BPNN. Thirdly, the BPNN model is

adopted instead of numerical calculation for objective

prediction. Finally, with the obtained prediction model, the

optimum minipump is selected by the NSGA-II.

2.1 Original design of minipump

The original reference minipump was designed to nomi-

nally generate a pressure head higher than 90 kPa under

2 L/min, 20,000 r/min. Through numerical simulation, the

initial minipump model generates a pressure head of

99.56 kPa, and 46.98 % hydraulic efficiency at nominal

operation conditions, which meet the given design objec-

tive. The detailed dimensions of the reference minipump

will be given in the following.

2.2 Objective functions

Two objective functions are involved in this study

including the pressure head H and the hydraulic efficiency

of the impeller g, which are defined as

H ¼ H2 � H1; ð1Þ

g ¼ qgHQ
P

; ð2Þ

where H, H1, H2, q, g, Q, and P represent the total head

rise, inlet total pressure, outlet total pressure, density,

gravity acceleration, volume flow rate and power,

respectively.

2.3 Decision variables

Figure 2 illustrates the profile and design variables of the

hydrodynamic components. The impeller design obeys the

partial emission pump model; meanwhile, structure

dimensions also shows high respect to processing consid-

eration. Figure 2a shows the axial projection. The blade top

and bottom edges are fixed by the tip clearances (x1, x2)

which refer to the motor shaft axial displacement. The

angle between the blade inlet edge and the hub c (as shown
in Fig. 2c) is defined as an 82� draft angle, which means

the blade inlet diameter D1 is subject to the inlet diameter

D0. As a result, the blade axonometric profile is dominated

by the impeller inlet diameter D0 and impeller outer

diameter D2. Figure 2b shows the plane projection. The

impeller blades are 2-D arc curved. Thus, the vane spine

line can be shaped by the blade inlet angle b1 and blade

outlet angle b2. In addition, thickness is one of the manu-

facturing constraints. Therefore, the blade thickness dis-

tributions were frozen in optimization process. Finally,

four design variables (Fig. 2) are employed as the decision

parameters: impeller inlet diameter D0, impeller outer

diameter D2, blade inlet angle b1, blade outlet angle b2.Fig. 1 (Color online) Components of the centrifugal minipump
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Table 1 lists the variables design space based on tradi-

tional pump design theory and former design and experi-

ment experiences. Evidently, the upper bound of D2 is

limited to the base circle diameter of the volute. The range

of b1 and b2 are initially determined wider for parameter

characterization; then, the variables space would be

adjusted based on optimization results and sensitivity test

in Sect. 4.

As tabulated in Table S1 (online), a 40 points sample

pool is established for neural network training. The sample

points are selected by Latin hypercube sampling (LHS)

[18] which is a typical stratified sampling. The principle is

to divide the sample space into m mutually exclusive

regions. Meanwhile, random samples from each region are

taken based on each input variable’s assigned distribution.

The design space for each factor can be uniformly repre-

sented and also the variance could reduce significantly

comparing with the random sampling [19].

The objective prediction of the sample is analyzed by

solving the Reynolds-averaged Navier–Stokes equations

(RANS) equations combined with the standard k–e model

and nonslip wall condition. The detailed numerical calcu-

lation process and validated the prediction accuracy were

presented in our previous work [13]. The fluid domain is

meshed with hybrid unstructured hexahedral and tetrahe-

dral elements. To obtain high precise calculation based on

the turbulence model, the overall value of Y? is less than

50 which is determined by the global Reynolds number

approximately 315, 611 (Re ¼ qu2D2=l, where u2 denotes

the peripheral speed of the impeller, and the characteristic

length refers to the impeller outlet diameter D2). Before

simulating the hydraulic performance of different impeller

models, convergence study on grids is conducted with

various numbers of grids. They are refined until the flow

field changes less than 0.5 %. Finally, 465 and 2,197 grids

are used in the simulation.

3 Objective prediction model

3.1 Application of simulated annealing in the topology

design of BPNN

Once the training sample is established, a BPNN can be

constructed as a surrogate model to make predictions for

the objective functions. BPNN [20] is a multilayer feed-

forward network which weights and biases are trained by

the error back-propagation algorithm. This network is

proved to approximate any nonlinear mapping. However,

to guarantee the prediction accuracy, BPNN requires an

adequate training sample which would lead to costly

numerical computation. Otherwise, it may be trapped into

local optimum ability and difficult to get satisfactory

generalization. Therefore, one method is to leverage the

advantages of global optimization algorithm to accelerate

the evolving speed of neural network and improve the

forecasting precision [21, 22].

To deal with the small sample learning problem, two

measures are taken in this paper: (1) Introducing

Fig. 2 (Color online) The profile and design variables of the

hydrodynamic components. a Axial projection, b plane projection,

c 3D impeller model and draft angle of inlet edge

Table 1 Original minipump design parameters and design variables

space

Decision variables D0 (mm) D2 (mm) b1 (�) b2 (�)

Reference model 4.4 14 25 60

Lower bound 2.8 12.8 19 25

Upper bound 5.8 14.2 49 70
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generalization error as the termination criterion for the

neural network; (2) Combining an enhanced simulated

annealing algorithm (SA) [23] to modify the BPNN.

Here the generalization error [24] is typical to represent

the prediction deviation of the network as the training

sample is inadequate, and the detailed introduction is

described in appendices. The SA is a global optimization

algorithm, by means of ‘‘annealing temperature’’ t, the

solution holds the probability: P = exp(–DE/t) to escape

from the current local optimum, where E is the general-

ization error.

The general concept of the present SA-BP structure is

applying SA to globally search the optimum weights and

biases sequence to reconstitute the BP network topology

that meets the minimum generalization error. Figure 3

illustrates the SA-BP algorithm model procedure. The

major steps are introduced as follows:

(1) The weights and biases boundary establishment The

BP algorithm is applied for preliminary calculation to

initialize the network. Then weights and biases

sequences are extracted to estimate the initial bound-

ary. The purpose is to narrow the searching range of

SA and improve calculating efficiency. The boundary

is flexible in the following steps.

(2) SA searching Performing the iteration process of

‘‘generating new solution—judging—accepting or

rejecting’’ to search for the weights and biases optimum

that minimize the generalization error. Adjust the

weights and biases boundary when the optimum

approaches the limit.

(3) BP reconstitution Updating the BP network and then

verifying the feasibility of the SA-BP structure when

the generalization error stabilizes.

Finally, a BP neural network with a hidden layer and

five neuron nodes is applied to establish the performance-

forecasting model for the minipump. After calculating, the

generalization error of pressure head and efficiency are

3.4 %, 0.7 %, respectively. Furthermore, average relative

Fig. 3 (Color online) The procedure of the SA-BP algorithm model
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variance ARV, absolute fraction of variance R2 and root

mean squared error RMSE are introduced to measure the

prediction precision which are defined as follows:

ARV ¼
PN

i¼1 ½xðiÞ � x
_

ðiÞ�2
PN

i¼1 ½xðiÞ � �xðiÞ�2
; ð3Þ

R2 ¼ 1�
PN

i¼1 ½xðiÞ � x
_

ðiÞ�2
PN

i¼1 x
_ðiÞ2

 !

; ð4Þ

RMSE ¼ 1=N
XN

i¼1

½xðiÞ � x
_ðiÞ�2

 !1=2

; ð5Þ

where x(i) is the target value, x
_ðiÞ is the prediction output.

Table 2 lists the statistical results of two BP networks. It is

observed that SA can significantly improve the BP gener-

alization performance, in particular the objective effi-

ciency. The statistical results present the superiority of SA-

BP structure considering small sample training. Hence, the

SA-BP can be utilized as a surrogate model for the pressure

head and efficiency optimization in NSGA.

4 Impeller optimization

This paper utilizes the NSGA-II to cope with the conflic-

tion of the pressure head and the efficiency optimums. The

NSGA-II developed by Deb is the derivation of genetic

algorithm (GA) [25] that comprise of sorting, crossover

and mutation. The gut of NSGA-II is the non-dominated

sorting with the introduction of crowding distance as the

fitness. The principle can be described as follows: in each

generation, the population is sorted into several fronts. The

first front known as Pareto front is completely non-domi-

nant set in the current population, while the subsequent

front is dominated by the individuals in the first front only

and the rest of the fronts go so on. Meanwhile, the indi-

vidual in each front is not dominated by any other one. The

crowding distance refers to surrounding individual density

in the current front calculated by taking the average dis-

tance of the two points on both side of the individual along

each objective. The individual with lower front rank or

larger crowding distance (same front rank) gets large

possibility to offspring. In this work, the gene is real-coded

to shorten coding length and eliminate the error generated

during encoding and decoding. The parameters in the

algorithm are given as follows: population size, 100; gen-

erations, 600; crossover probability, 0.9; mutation proba-

bility, 0.1 and no further augment on population size.

Besides, the minimum blade pitch is the key limitation

to the mold processing and cannot be narrower than 0.5

mm. Hence, this constraint is also embedded into NSGA

for individual screening. The detailed geometrical formu-

lation is introduced in the Electronic supplementary

material.

4.1 Pareto-optimal frontier

Figure 4 shows the Pareto-optimal frontier (POF) of the

NSGA with the SA-BP model. The top axis refers to effi-

ciency value, and the right axis is pressure head. The

bottom and left axes refer to the corresponding nondi-

mensionalized value. Euclidian non-dimensionalization is

utilized to normalize the objective functions space for the

decision-making algorithm in Sect. 4.3. The nondimen-

sionalized objective function is defined as,

Pði; jÞ ¼ Vði; jÞ
,

XN

i¼1

Vði; jÞ2
 !1=2

; ð6Þ

where i refers to the individual index in the POF, j refers to

the objective function index, and V(i, j) refers to the

objective function value in the POF.

In order to fully analyze the geometric and hydrody-

namic characteristic in the Pareto-optimal frontier, the

individuals in the POF are decomposed into 4 clusters

utilizing hierarchical clustering method. The clustering

principle bases on the nearest distance from the weighted

center of mass (as highlighted in Fig. 4). Table S2 (online)

Table 2 Statistical results of two BP networks

Generalization

error (%)

ARV R2 RMSE

Pressure head

BP 4.4 0.26 0.9970 0.0537

SA-BP 3.4 0.12 0.9992 0.0234

Efficiency

BP 2.1 0.921 0.9994 0.0120

SA-BP 0.7 0.156 0.9999 0.0049
Fig. 4 (Color online) Pareto-optimal frontier through SA-BP
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compares the POF solutions of the four typical centers with

the corresponding numerical calculations. The maximum

deviations of the SA-BP predictions from the relative

RANS analysis are 1.98 % and 2.68 %, respectively, for

the pressure head H and the hydraulic efficiency g,
demonstrating the accuracy of the optimization method.

Table S3 lists the extreme values of the design variables

and objective functions in the Pareto-optimal frontier and

each cluster. The POF solutions show a large margin than

the original reference minipump with 20.89 kPa and

4.41 % increase in H and g, respectively. It is notable that

among the overall POF space, the impeller inlet diameter

D0 varies within 34 % of the decision variables space and

gathers near the lower bound, and the impeller outlet

diameter D2 gathers in 33 % of the decision variables space

near the upper bound, while the blade inlet angle b1 and the
blade outlet angle b2 are fixed near the upper bound. In

clusters A, B, the pressure head improves 5.6 kPa at the

cost of 0.16 % hydraulic efficiency drop. In cluster D, a

0.61 kPa drop in pressure head can increase 0.8 % in

hydraulic efficiency (accounts for nearly 50 % in the POF

range).

Graphically, the box charts of D0, D2 in each cluster are

illustrated in Fig. 5 to reveal the variability of the decision

variables. It is observed that both of the design variables

show an increasing trend to improve the pressure head. As

to the cluster A, the D0 lies near the minimum with little

variability which reflects that in cluster A, the objective

variables are sensitive to D0. Therefore, the steep increase

in pressure head as shown in Fig. 5 is mainly subject to the

D2. Likewise, the objective variables in cluster D are

sensitive to D2, and the efficiency is influenced by D0.

4.2 Decision variables characterization

In order to assess the influence of every decision variable

upon the objective functions (known as sensitivity), and

provide references for future parameter range determina-

tion, the Sobol’ method is applied for global sensitivity test

[26]. This method is a Monte Carlo analysis based on

variance to reflect the output uncertainty according to

different decision variables. It can not only measure the

independent variable effect on the objective function,

which refers to the fraction of the total output variance

contributed by a particular variable i in isolation, the so-

called first-order global sensitivity (Si), but also calculate

the total global sensitivity (TSi) which refers to the sum of

all the sensitivities involving the particular variable i,

hence reflects the interactions between the decision vari-

ables. The definitions are given as,

Si ¼
Di

D
; ð7Þ

TSi ¼
Pn

j¼1 Di1���ij

D
: ð8Þ

Figure 6 shows the first-order and total sensitivities of

the decision variables. The pressure head H is mainly

contributed by the blade outlet angle b2 and moderately by

the impeller outer diameter D2. Meanwhile, the influence

of the other parameters is negligible, indicating that they

can keep constant under the case of single object

optimization for pressure head. In addition, the first-order

sensitivities are parallel to the according total sensitivities,

suggesting that the decision variables are independent. For

hydraulic efficiency, D0 and b1 have considerable

influence, and the interactions involving D0 are notable.

Hence, combining the results of the POF and sensitivity

test, suggestion could be given that, the optimization range

of D0 and b2 should be narrow down to further improve the

prediction precision considering the significant sensitivity

at the present variable space. Oppositely, the variable space

of b1 could be broadened properly. Moreover, as b1 and b2
reach the upper bound in POF, the relevant upper bound

should be raised for the future optimization.

4.3 Optimum minipump selection

The final optimum minipump should be determined to typ-

ically integrate both prominent pressure head and efficiency

performance. In Fig. 4, we can see that every individual in

Fig. 5 Box chart of D0 (a), D2 (b) in each cluster
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the POF is superior to the original reference, and the arbi-

trary choice of one individual in the nondominated set over

the other is biased and unacceptable with respect to all

objectives. One common approach for decision making is to

compare the scalar of the objective vectors by designating

corresponding weights to the objectives. The obtained

solution largely depends on engineering experiences and

weight factor of each objective. In literature [27], the best

two-object optimization solution is located at the vertical

point from the ideal point to the POF hence the closest dis-

tance of both, representing the best possible values for

objectives. The ideal point illustrated in Fig. 4 represents the

optimum objective values in the POF, and the non-ideal

point goes to minimum. This paper employs technique for

order preference by similarity to ideal solution (TOPSIS)

method (detailed in Ref. [28]) for decision making from the

POF results. Nevertheless, theDS introduced here represents

the distance to the reference point rather than to the non-ideal

point, as defined

DS ¼
Xn

j¼1

½PðjÞ � PRðjÞ�2
 !1=2

; ð9Þ

where n refers to the objective dimension, j refers to the

objective index, P(j) refers to the objective function in the

POF, PR(j) refers to the objective function of the original

reference. The objective function is nondimensionalized

(Eq. (6)).

Hence the criterion B is defined as follows,

B ¼ DS

DP þ DS

; ð10Þ

where the Dp represents the distance to the ideal point as

shown in Fig. 4.

The maximum criterion B is determined as the typical

solution implies that it contains the considerations to widen

the difference from the original reference and to approach

the ideal situation. Finally, the TOPSIS point with the

criterion B of 0.931 is selected as the optimum model.

Table S2 provides the detail design and objective values. It

is noteworthy that this selection method maybe changed or

unacceptable in other situation.

5 Model validation

To validate the optimization process introduced above, we

manufactured the optimum minipump prototype. The

objective hydraulic performance was measured through the

minipump testing loop [13]. The pressure head is measured

via the inlet and outlet pressure ports using differential

pressure transducers (Yokogawa, EJA110A), and the vol-

umetric flow rate is measured with an electromagnetic

flow-meter (Yokogawa, AXF005G). The accuracy of the

pressure and flow sensors are less than or equal to 6.5 %

kPa and 4.14 % L/min, respectively. A temperature control

unit is set in the reservoir to ensure a stable system liquid

temperature. Meanwhile, numerical simulation was

implemented based on computational fluid dynamics

(CFD) to compare the flow field properties.

5.1 External characteristic

Figure 7 shows the fabricated minipump prototype. The

entire system uses stainless steel and weighs 166 g. The

overall length is 84 mm including the electrical termi-

nal. The brushless DC motor is driven by a 28 V

controller and can rotate from 10,000 to 25,000 r/min.

Figure 8 presents the H–Q results comparison

between the reference and TOPSIS model at 3 rotational

speeds. It is noted that the deviation between numerical

prediction and experiment result increases as the flow

rate decreasing. The reason is observed that the mini-

pump operating conditions deteriorates because of the

impeller axial play getting intense when the flow rate

decreases. The highest deviation under 400 mL/min is

found to be 6.5 % at 20,000 r/min for the reference

Fig. 6 The first-order and total sensitivity of the decision variables to pressure head (a), hydraulic efficiency (b)
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model. When larger than 600 mL/min, the highest and

average deviation for both models are 3.9 % and 2.0 %,

respectively, demonstrating that the numerical simula-

tion has a high accuracy to predict the minipump flow

field. The TOPSIS minipump presents gentle operating

curves comparing with the reference one. Significantly,

the TOPSIS model generates a much higher pressure

head than the reference model over the full range of flow

rate at 3 rotational speeds. The pressure head deviation

increases as the flow rate increasing and reaches 24.2 %

at 2,050 mL/min, 20,000 r/min.

Figure 9 shows the overall efficiency comparison

between the reference and TOPSIS model. The hydraulic

efficiency improves about 1.5 % as the rotational speed

drops 2,000 r/min. The best efficiency point delays at 2 L/

min for the both models. It is observed that the efficiency

of the reference model is higher than the TOPSIS at small

flow rate, while the situation goes to the contrary side with

the increase in flow rate. Besides, the efficiency difference

is minor over the full range of flow rate at 3 rotational

speeds. The highest deviation is relatively 4.75 % at

2,000 mL/min, 20,000 r/min, reflecting that the optimum

selection strategy tend to significantly improve the pressure

head compared to efficiency. According to the POF solu-

tions, the hydraulic efficiency can increase relatively 8.8 %

at the expense of sacrificing the head pressure (For

example, see point A in Fig. 4).

5.2 CFD flow field

Figure 10 shows the static pressure contours at the plane

located in the middle height of the minipump for the

nominal condition. It is observed that the TOPSIS model

can smoothen the contour curves along the impeller pas-

sage comparing to the reference. Meanwhile, the low

pressure region in the latter caused by the impeller wake

messes up the pressure distribution in the volute, especially

near the laryngeal. Those situations are suppressed in

TOPSIS impeller. Figure 11 shows the static pressure

contour slices at the central X–Y plane of the minipump for

Fig. 7 (Color online) The minipump prototype. a The fabricated impeller, b the minipump assembly

Fig. 9 (Color online) g-Q results comparison between the reference

and TOPSIS model

Fig. 8 (Color online) H–Q results comparison between the reference

and TOPSIS model
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the nominal condition. Similarly, the low pressure region

completely clogs the impeller inlet which would yield the

flow stream. Near the impeller passage outlet occur the

uneven pressure spots further aggravating the turbulence

intensity. On the contrary, the TOPSIS impeller generates a

smooth and steady pressure filed from the inlet to the

volute. The pressure distribution is more regular as the

contour curves going parallel to the blade section. Fig-

ure 12 illustrates the streamline paths at the pressure

surface of the impeller for the nominal condition. As

expected, the streamlines are badly oriented in the refer-

ence minipump near the impeller inlet. The large recircu-

lation zone spotted in the reference model is improved in

the TOPSIS impeller.

Thus it is proved that the TOPSIS minipump can both

smooth the pressure distribution and improve the flow

orientation, and these are the main reasons to raise the

hydraulic efficiency.

Fig. 10 Static pressure contours (Unit: Pa) at the plane located in the middle height of the minipump for the nominal condition. a TOPSIS

model, b reference model

Fig. 11 Static pressure contour (Unit: Pa) slices at the central X–Y plane of the minipump for the nominal condition. a TOPSIS model,

b reference model

Fig. 12 Streamline paths at the pressure surface of the impeller for the nominal condition. a TOPSIS model, b reference model

Sci. Bull. (2015) 60(17):1517–1526 1525
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6 Conclusions

The current work presents a systematic method to design,

characteristic and optimize the mechanical minipump. We

introduced the generalization error into the neural network

to improve the generalization performance at the case of

small sample training. Compared to the standard BP net-

work, the statistical results show that SA-BP network can

significantly improve the prediction accuracy, particularly

for the objective efficiency. The optimized minipump was

proved to improve 24 % in pressure head and 4.75 % in

hydraulic efficiency.

NSGA and sensitivity test give an overall insight into

the decision variables characteristic. Referring to the POF

generated by NSGA, the high pressure head situation pre-

sents an impeller profile with larger D0 and D2. While at

the high efficiency condition, the pressure head is mainly

influenced by D2. The sensitivity test shows that the pres-

sure head H is mainly contributed by b2 and moderately by

D2. While for hydraulic efficiency, D0 and b1 have con-

siderable influence, and the interactions involving D0 are

notable. From the CFD analysis, the optimum model can

relieve the impeller wake and improve both the pressure

distribution and flow orientation.
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