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Diffusioosmotic flows in slit nanochannels
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Abstract

Diffusioosmotic flows of electrolyte solutions in slit nanochannels with homogeneous surface charges induced by electrolyte concentration
gradients in the absence of externally applied pressure gradients and potential differences are investigated theoretically. A continuum mathe-
matical model consisting of the strongly coupled Nernst–Planck equations for the ionic species’ concentrations, the Poisson equation for the
electric potential in the electrolyte solution, and the Navier–Stokes equations for the flow field is numerically solved simultaneously. The induced
diffusioosmotic flow through the nanochannel is computed as functions of the externally imposed concentration gradient, the concentration of
the electrolyte solution, and the surface charge density along the walls of the nanochannel. With the externally applied electrolyte concentration
gradient, a strongly spatially dependent electric field and pressure gradient are induced within the nanochannel that, in turn, generate a spatially
dependent diffusioosmotic flow. The diffusioosmotic flow is opposite to the applied concentration gradient for a relatively low bulk electrolyte
concentration. However, the electrolyte solution flows from one end of the nanochannel with a higher electrolyte concentration to the other end
with a lower electrolyte concentration when the bulk electrolyte concentration is relatively high. There is an optimal concentration gradient un-
der which the flow rate attains the maximum. The induced flow is enhanced with the increase in the fixed surface charge along the wall of the
nanochannel for a relatively low bulk electrolyte concentration.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In recent years, there has been a growing interest in de-
veloping nanofluidic devices with features comparable in size
to DNA, proteins, and other biological molecules for biolog-
ical and chemical analysis [1–5]. In nanofluidic devices, it is
necessary to propel fluids from one part of the device to an-
other, control fluid motion, enhance mixing, and separate fluids.
Pressure-driven flow in nanochannels is usually very difficult
due to its high pressure loss with a very low volume flow rate.
On the other hand, electroosmotic pumps with no moving parts
are commonly used to transport liquids through nanochannels
by external electric fields. Electroosmosis and electrophoresis
have been widely used for fluid and particle manipulations in
microfluidics and nanofluidics. Instead of externally applying
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an electric field, an electrolyte solution in a nanochannel can
also be driven by means of diffusioosmosis through the applica-
tion of gradients of solute concentration. With a concentration
gradient on the order of 1 M/cm along a charged surface with
a zeta potential on the order of kBT/e (kB is the Boltzmann
constant, T is the absolute temperature, and e is the elementary
charge), the induced diffusioosmotic flow has a velocity on the
order of µm/s [6–17]. Like the well-known electroosmosis phe-
nomenon, diffusioosmosis originates from electrostatic interac-
tion between the electrolyte and the charged solid’s surface that
is in contact with the electrolyte solution. Therefore, both elec-
troosmosis and diffusioosmosis fall into the same category of
surface-driven phenomena that take advantage of the increase
of surface to volume ratio [18]. However, flow generation in
nanofluidics by diffusioosmosis has received less attention than
fluid motion induced by electroosmosis.

We consider a nanochannel connecting two reservoirs on ei-
ther side (Fig. 1). The wall of the nanochannel is charged. The
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Fig. 1. Schematic of a slit nanochannel of length L and height 2a connecting two reservoirs on either side. The surface charge density along the wall of the
nanochannel is σw. The length and height of the reservoir are, respectively, LR and 2b. When a concentration gradient of electrolyte solution is applied across the
two reservoirs, a potential difference and a pressure gradient, and thus diffusioosmotic flow are induced in the absence of any external pressure gradient and potential
difference.
two reservoirs contain a dilute electrolyte solution with differ-
ent concentrations. Due to the electrostatic interaction between
the ionic species present in the electrolyte solution and the fixed
surface charge along the wall of the nanochannel, counterions
accumulate in a thin liquid layer next to the solid’s surface. This
thin layer is known as the electrical double layer (EDL), and its
thickness is typically on the order of 10 nm [19]. In the presence
of an external concentration gradient of the electrolyte solution,
fluid motion is generated by two mechanisms: electroosmotic
and chemiosmotic effects. Due to the presence of the concen-
tration gradient, electrolyte ions diffuse in the nanochannel, ac-
companied by a net diffusive flux of charge when the mobilities
of the anion and cation are not equal. As a result, an elec-
tric field is induced that compensates for the net diffusive flux
of charge across the nanochannel. The induced electric field,
through its action on the counterions accumulated in the EDL,
creates a body force that, in turn, induces fluid motion. In con-
trast to the electroosmotic flow driven by an externally applied
electric field, the fluid motion due to the electroosmotic effect in
diffusioosmosis phenomenon is driven by the induced electric
field in the absence of an externally applied electric field. Al-
though there is no externally applied pressure gradient across
the channel, a pressure gradient is induced by the electrolyte
gradient, which induces shear in the EDL and a flow opposite
to the concentration gradient [6–18]. Therefore, the diffusioos-
motic flow is driven by both the induced electric field and the in-
duced pressure gradient in the absence of the externally applied
electric field and pressure gradient. As compared to the elec-
troosmotic flow and the pressure-driven flow, the two strategies,
electroosmosis and pressure-driven, are synergetically com-
bined in diffusioosmotic flow, yielding strongly enhanced inter-
facial driven flows in nanofluidic and microfluidic devices [18].

Previous investigations of diffusioosmotic flow are very lim-
ited. Most studies to date have focused on diffusioosmotic flows
near plane walls and in straight conduits (i.e., capillary tubes
and slits) with uniform zeta potentials or surface charges along
the walls. See, for example, Keh and Ma [17] and the references
cited therein. In addition, most previous analysis of diffusioos-
motic flows has been subjected to several restrictions, such as a
thin EDL [6,7], a sufficiently low zeta potential along the wall
[8,13], and neglected effects of the ionic concentration distrib-
utions and ionic convection on the induced local electric field
and pressure gradient [7,8,13,14]. Moreover, the deformation
and concentration polarization of the EDL due to the convec-
tion have not been taken into account in previous work. In this
paper, we study diffusioosmotic flows in slit nanochannels with
uniform surface charge densities along the channel’s walls. In
contrast to the previous work, the current analysis accounts for
the polarization of the EDL with no assumption made concern-
ing the thickness of the EDL and the magnitude of the zeta
potential or surface charge density along the wall. In addition,
the effects of the reservoirs connecting the nanochannel are also
taking into account in the current work.

The rest of the paper is organized as follows. Section 2
describes the full mathematical model for the fluid motion in-
duced by both the induced pressure gradient and the induced
electric field and the general multi-ion mass transport model
that accounts for the polarization of the EDL. Detailed code
validation is described in Section 3. The diffusioosmotic flows
in slit nanochannels under various conditions are presented and
discussed in Section 4. Section 5 concludes.

2. Mathematical model

Let us consider a charged slit nanochannel with length L

and height 2a connecting two identical reservoirs on either
side. Fig. 1 schematically depicts the geometry. The length and
height of the reservoir are, respectively, LR and 2b. We assume
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that the top and bottom walls of the nanochannel carry the same
surface charge density, σw. Utilizing the symmetry of the geom-
etry, a two-dimensional Cartesian coordinate system (x, y) with
origin located at the center of the nanochannel is used. The x

and y coordinates are, respectively, parallel and perpendicular
to the axis of the nanochannel. The symmetrical model geome-
try is represented by the region bounded by the outer boundary
ABCDEFGH and the line of symmetry, AH. The dashed line
segments, AB, BC, FG, and GH, represent the regions in the
reservoirs. The length LR and height 2b of the reservoir are
sufficiently large to ensure that the electrochemical properties
at the locations of AB, BC, FG, and GH are not influenced by
the nanochannel. We assume that the walls of the two reservoirs
(line segments CD and EF) are electrically neutral surfaces. The
left and right reservoirs are filled with two identical electrolyte
solutions with different bulk concentrations, CL and CR, and
we assume that CR > CL so that a concentration gradient along
the x-direction is externally imposed. We also assume that there
is no externally applied pressure gradient across the two reser-
voirs.

Recently, Qian et al. [20] and Liu et al. [21] studied DNA’s
electrophoretic motion through a nanopore using a continuum
model consisting of the Nernst–Planck equations for the con-
centrations of the ionic species, the Poisson equation for the
electrical potential in the electrolyte solution, and the Navier–
Stokes equations for the flow field. The theoretical predictions
agree qualitatively with the experimental data obtained from
the literature and the predictions obtained from the molecular
dynamics simulations pertaining to the translocation of DNA
molecules in nanopores. We therefore assume that the contin-
uum model is still valid for our current analysis. In the follow-
ing sections, we present dimensional mathematical models for
the fluid motion and ionic mass transport through the reservoirs
and the nanochannel.

2.1. The mathematical model for the fluid motion

We consider a binary, symmetric electrolyte solution such as
KCl aqueous solution. Because typically the Reynolds numbers
of the diffusioosmotic flows in nanochannels are very small,
we neglect the inertial terms in the Navier–Stokes equations
and model the fluid motion with the Stokes equations. Subse-
quently, the motion of the incompressible electrolyte solution
generated by the induced electrostatic force and the induced
pressure gradient is described by the modified Stokes equations

(1)∇ · u = 0

and

(2)−∇p + μ∇2u − F(z1c1 + z2c2)∇V = 0.

In the above, u = uxex + uyey is the fluid’s velocity. Hereafter,
bold letters denote vectors; ex and ey are, respectively, unit vec-
tors in the x- and y-directions; ux and uy are, respectively, the
velocity components in the x- and y-directions; p is the pres-
sure; V is the electric potential in the electrolyte solution; c1
and c2 are, respectively, the molar concentrations of the positive
(K+) and negative (Cl−) ions in the electrolyte solution; z1 and
z2 are, respectively, the valences of the positive and negative
ions; F is the Faraday constant; and μ is the electrolyte solu-
tion’s dynamic viscosity. The last term on the left-hand side of
Eq. (2) represents the electrostatic force through the interaction
between the induced electric field and the net charge density
in the electrolyte solution, which plays a similar role to that
of the induced pressure gradient (the first term on the LHS of
Eq. (2)).

In order to solve Eqs. (1) and (2), appropriate boundary
conditions are required. A nonslip boundary condition (i.e.,
ux = uy = 0) is specified at the solid walls of the nanochannel
and the reservoirs (line segments CD, DE, and EF in Fig. 1). At
the planes AB and GH of the reservoirs, since they are far away
from the nanochannel and there is no externally applied pres-
sure gradient across the two reservoirs, normal pressure with
p = 0 is used in the planes AB and GH. A symmetric bound-
ary condition is used along the line of symmetry, AH. Finally,
slip boundary conditions are used on the segments BC and FG,
since they are far away from the entrances of the nanochan-
nel.

2.2. The general model for multi-ion mass transport

2.2.1. Governing equations
In this section, we present a more general multi-ion mass

transport model that includes the Nernst–Planck equation for
the concentration of each ionic species and the Poisson equation
for the electric potential in the electrolyte solution. The flux
density of each aqueous species due to convection, diffusion,
and migration is given by

(3)Nk = uck − Dk∇ck − zkmkFck∇V, k = 1 and 2.

In the above, ck is the molar concentration; Dk is the diffusion
coefficient; zk is the valence; and mk is the mobility of the kth
ionic species. The flow field u is determined by simultaneously
solving the continuity and the Stokes equations (1) and (2). The
first, second, and third terms on the RHS of expression (3) rep-
resent, respectively, the convective, diffusive, and migrative flux
density. Using the Nernst–Einstein relation, the mobility mk is
expressed in terms of the diffusivity Dk , the universal gas con-
stant R, and the absolute temperature T :

(4)mk = Dk

RT
, k = 1 and 2.

Under steady state, the concentration of each species is gov-
erned by the Nernst–Planck equation:

(5)∇ · Nk = 0, k = 1 and 2.

The set of Eq. (5) consists of three unknown variables: the
concentrations of the positive and negative ions and the electri-
cal potential, V . The Poisson equation provides the third equa-
tion:

(6)−ε∇2V = F(z1c1 + z2c2).

In the above, ε is the permittivity of the electrolyte solution.
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2.2.2. Boundary conditions for the Nernst–Planck equations
In the plane AB, the concentrations of the positive and neg-

ative ions are the same as the bulk concentration of the elec-
trolyte solution present in the left reservoir:

(7)c1 = c2 = CL in the plane AB.

Similarly, the concentrations of the ions at the plane GH are the
same as the bulk concentration of the electrolyte solution in the
right reservoir:

(8)c1 = c2 = CR in the plane GH.

At the walls of the reservoirs and the wall of the nanochan-
nel (line segments CD, DE, and EF in Fig. 1), since the solid
surfaces are impervious to ions, the net ion fluxes normal to the
rigid walls are zero:

(9)n · N1 = n · N2 = 0 in the planes CD, DE, and EF.

In the above, n is the unit vector normal to the corresponding
surface.

The boundary conditions on the segments BC and FG are
defined with the assumption that these surfaces are in the bulk
electrolyte reservoirs. Accordingly, zero normal flux is used for
the Nernst–Planck equations:

(10)n · N1 = n · N2 = 0 in the planes BC and FG.

Along the segment AH, a symmetric boundary condition is
used for the Nernst–Planck equations:

(11)n · N1 = n · N2 = 0 in the plane AH.

2.2.3. Boundary conditions for the Poisson equation
A symmetric boundary condition for the electric potential in

the electrolyte solution is used in the plane AH:

(12)n · ∇V = 0 in the plane AH.

Along the plane AB, the boundary condition for the electric
potential is

(13)V = φ in the plane AB

and the potential, φ, is unknown a priori and needs to be deter-
mined from the zero current condition:

(14)
∫

S

F (z1N1 + z2N2) · ndS = 0.

In the above, S is the surface area of the plane AB. The current
density in the electrolyte solution is

(15)i = F(z1N1 + z2N2).

Based on the Nernst–Planck equation (5), one can obtain the
conservation of charge:

(16)∇ · i = 0.

At any cross section (i.e., I1 − I2 in Fig. 1) that is perpendic-
ular to the x-axis, we choose a control volume that is bounded
by the planes AB, BC, CD, DI2, I2I1, and AI1. Based on the
boundary conditions (9)–(11), the currents entering the control
volume through the planes BC, CD, DI2, and AI1 are zero. Con-
straint (14) implies that the current entering the control volume
through the surface AB is zero. Based on the conservation of
charge (14), the current along the cross section I1I2 is zero.
Therefore, constraint (14) implies that the current is zero for
each cross section that is perpendicular to the x-axis.

Along the plane GH, we set the potential to zero as the ref-
erence potential:

(17)V = 0 in the plane GH.

Since the surfaces of BC and FG are far away from the
nanochannel and are in the bulk electrolyte reservoirs, no
charge boundary condition for the potential is used:

(18)n · ∇V = 0 in the planes BC and FG.

Since the walls of the reservoirs (planes CD and EF) do not
carry a fixed charge, we use

(19)n · ∇V = 0 in the planes CD and EF.

Along the wall of the nanochannel, the following boundary
condition for the potential is used:

(20)n · (−ε∇V ) = σw in the plane DE.

The above model differs from the previous study on diffu-
sioosmosis of electrolyte solutions in a fine capillary tube [17],
in which the ionic concentration of each species is described by
the Boltzmann distribution and the electrical potential is then
described by the commonly used Poisson–Boltzmann model.
Consequently, the electrostatics and hydrodynamics are decou-
pled. However, the Boltzmann distribution is valid under the
following assumptions: (a) the system is in equilibrium (i.e.,
no convection and diffusion); (b) the channel wall has a ho-
mogeneous surface charge; and (c) the charged surface is in
contact with an infinitely large liquid medium where the poten-
tial is zero and the ionic concentration is the same as that of
the bulk solution [22, pp. 13–14]. In the current study, the liq-
uid is confined in a nanochannel with dimensions comparable
to the thickness of the EDL. Obviously, the Boltzmann distri-
bution is not valid in our case. The multi-ion model presented
here accounts for the deformation and polarization of the EDL
and is valid for any thickness of the EDL. Witness that the mo-
mentum and mass transport equations are strongly coupled. The
flow field affects the mass transport due to convection. On the
other hand, the mass transport, in turn, affects the flow field
through the induced electric field. The model requires one to si-
multaneously solve the coupled equations including the Stokes
equations (1) and (2), the Nernst–Planck equation (5), and the
Poisson equation (6).

3. Code validation

We solved the strongly coupled system with the commercial
finite element package COMSOL (version 3.3a, www.femlab.
com) operating with a 64-bit dual-processor workstation with
32 GB RAM. The computational domain bounded by ABCDE-
FGH in Fig. 1 was discretized into quadrilateral elements since
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Fig. 2. (a) Concentrations of the positive (c1) and negative (c2) ions along the x-axis of the nanochannel. (b) The induced electric potential along the x-axis. The
lines and symbols represent, respectively, our numerical results and those obtained by Pivonka and Smith [25].
the domain is fairly regular in shape. We employed nonuniform
elements with a larger number of elements within the nanochan-
nel with at least 10 elements positioned inside the EDL next to
the wall (segment DE) of the nanochannel. We compared the
solutions obtained for different mesh sizes to ensure that the
numerical solutions are convergent, independent of the size of
the finite elements, and satisfy the various conservation laws.

We first validated the numerical solutions of the conjugated
problems when the flows are driven by electroosmosis alone.
First, we simulated an electroosmotic flow within a cylindri-
cal microchannel without connecting reservoirs on either side.
Note that the geometry of this case is different from that shown
in Fig. 1. We also assume that the wall of the microchannel
has a constant zeta potential and the axial electric field is uni-
form within the microchannel. The numerical results agree very
well with those obtained from the analytical solution provided
by Li [22] and derived within the Debye–Hückel limit valid for
sufficiently low zeta potentials. Second, we simulated the ionic
mass transport in nanofluidic channels without considering the
convection (i.e., u = 0). In other words, the ionic mass trans-
port is governed only by the diffusive and migrative processes.
We solved the set of Nernst–Planck equations (5) without con-
vection and the Poisson equation (6), and our numerical results
agree well with those obtained from Daiguji et al. [23]. Third,
we simulated the full mathematical model including the fluid
motion and the ionic mass transport in a rectangular nanochan-
nel without connecting reservoirs on either side. The height and
length of the channel are, respectively, 100 nm and 5 µm. The
fluid motion is driven by electroosmosis through the externally
applied electric field. Our results obtained from the commercial
software COMSOL are in excellent agreement with the results
of Theemsche et al. [24], who numerically solved the same
problem with their own finite element code written in C++.

We also simulated the diffusioosmotic flow in a slit nano-
channel when L = 150 nm, a = 5 nm, LR = 30 nm, b =
15 nm, CL = 10 mM, CR = 20 mM, and σw = −0.01 C/m2.
This problem has been investigated by Pivonka and Smith [25]
during the study of nanoscale electrohydrodynamic transport
phenomena in charged porous materials (see subproblem 1.1,
row 4 in Table II, page 1984 in Ref. [25]). Fig. 2a depicts the
concentration distributions of the positive ions (c1) and neg-
ative ions (c2) along the x-axis of the channel when D2 =
2D1 = 3.0 × 10−9 m2/s. Fig. 2b depicts the induced electric
potential along the x-axis. The lines and symbols in Figs. 2a
and 2b represent, respectively, our numerical results and the re-
sults obtained by Pivonka and Smith, and they are in excellent
agreement. The potentials φ obtained from our numerical simu-
lation and the result by Pivonka and Smith are, respectively, 3.4
and 3.2 mV, and they are in good agreement. As compared to
the work by Pivonka and Smith, the current study systemati-
cally investigated the diffusioosmotic flows in nanochannels as
functions of the externally imposed concentration gradient, the
concentration of the electrolyte solution, and the surface charge
along the walls of the nanochannel, which have not been inves-
tigated by Pivonka and Smith.

4. Results and discussions

In this section, we present a few numerical results of the
diffusioosmotic flows in slit nanochannels with various homo-
geneous surface charge densities using the general multi-ion
model. We focus on the effects of the bulk electrolyte concen-
tration in the left reservoir, CL, the magnitude of the concentra-
tion gradient, (CR − CL)/(L + 2LR), and the magnitude of the
surface charge density along the wall of the nanochannel on the
induced fluid motion. In the numerical simulations, a nanochan-
nel with length L = 1.0 µm and height 2a = 20 nm connecting
two identical reservoirs 0.2 × 0.2 µm2 (i.e., LR = 0.2 µm and
2b = 0.2 µm) in size on either side of the nanochannel. The
temperature of the electrolyte solution in the reservoirs and
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Fig. 3. The x-component diffusioosmotic velocity as a function of y at the cross
section x = 0 when the electrolyte concentration in the left reservoir is, respec-
tively, CL = 10 mM (solid line), 20 mM (dashed line), and 30 mM (dash–dotted
line). �C = 10 mM and σw = −0.01 C/m2.

the nanochannel is 300 K. The diffusion coefficients of the
ions K+ (c1) and Cl− (c2) are, respectively, 1.95 × 10−9 and
2.03 × 10−9 m2/s.

4.1. Effects of the bulk electrolyte concentration CL

Fig. 3 depicts the x-component velocity profiles, ux(0, y), in
the central cross section (x = 0) of the nanochannel when the
surface charge density is σw = −0.01 C/m2. The solid, dashed,
and dash–dotted lines correspond, respectively, to the cases
with CL = 10, 20, and 30 mM with �C = CR − CL = 10 mM.
The electrolyte concentration gradient is in the negative x-
direction. When CL is below a threshold value, the fluid flows in
the direction opposite to the electrolyte concentration gradient
in the central region of the nanochannel and ux is negative in the
region near the wall. As CL increases, the magnitude of the pos-
itive velocity in the central region of the nanochannel decreases.
Once the bulk electrolyte concentration, CL, is above a critical
value, the x-component velocity becomes negative in the entire
nanochannel, which indicates that the fluid flows from the right
reservoir with a higher electrolyte concentration toward the left
reservoir with a lower electrolyte concentration. The velocity
profile is different from the “pluglike” velocity profile as typi-
cally encountered in the electroosmotic flow in a nanochannel
with a homogeneous surface charge density. The velocity pro-
file in the diffusioosmotic flow results from the combination of
the electroosmotic flow and the pressure-driven flow.

To better understand the reasons for the diverse flow direc-
tions, Fig. 4 depicts the induced electric field in the x-direction
along the cross section x = 0 when the surface charge density
is σw = −0.01 C/m2. In contrast to the electroosmotic flow, in
which the axial electric field is almost uniform along the cross
sections, which are perpendicular to the flow direction, the in-
duced axial electric field in the diffusioosmotic flow is spatially
dependent. The direction of the x-component electric field is
opposite to the electrolyte concentration gradient in the central
region of the channel, and is in the same direction as that of the
Fig. 4. The electric field in the x-direction as a function of y at the cross section
x = 0 when the electrolyte concentration in the left reservoir is, respectively,
CL = 10 mM (solid line), 20 mM (dashed line), and 30 mM (dash–dotted line).
�C = 10 mM and σw = −0.01 C/m2.

electrolyte concentration gradient in the region near the wall
of the channel. As the bulk electrolyte concentration, CL, in-
creases, the magnitude of the electric field decreases. Since the
wall of the nanochannel carries negative surface charges, the
concentration of the counterions (K+) is enriched and the con-
centration of the co-ions (Cl−) is depleted inside the nanochan-
nel. As a result, the net charge density, ρe = F(z1c1 + z2c2), is
positive. Through the interaction between the net charge density
and the induced axial electric field, the fluid moves in the pos-
itive x-direction in the central region of the channel in which
the axial electric field is positive, and the fluid velocity is nega-
tive in the region near the wall of the channel in which the axial
electric field is negative.

Besides the electrostatic force, the fluid is also driven by the
induced pressure gradient. Fig. 5 depicts the pressure gradient
in the x-direction, ∂p/∂x, along the cross section x = 0 when
the surface charge density is σw = −0.01 C/m2. All other con-
ditions are the same as those in Fig. 3. A negative pressure gra-
dient is induced for various bulk electrolyte concentrations. In
the central region of the channel, the magnitude of the pressure
gradient is relatively low. The magnitude of the pressure gradi-
ent increases until it peaks and then declines as y increases. The
magnitude of the induced pressure gradient decreases as the
concentration, CL, increases. The fluid driven by the induced
negative pressure gradient flows in the positive x-direction. The
net flow as shown in Fig. 3 is the combined result of the flows
driven by the induced electrostatic force and the induced pres-
sure gradient. In the central region of the channel, the net flow
is positive since the flow is driven by favorable electrostatic
force and pressure gradient. In the region near the wall, the
flow driven by the favorable pressure gradient is in the positive
x-direction. However, the negative axial electric field (Fig. 4)
drives the counterions and their surrounding liquid molecules to
move in the negative x-direction. In the region near the wall, the
flow driven by the electrostatic force is opposite to the pressure-
driven flow, and the former is dominant. As a result, the net flow
in the region near the wall is in the negative x-direction.
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Fig. 5. The pressure gradient in the x-direction as a function of y at the cross
section x = 0 when the electrolyte concentration in the left reservoir is, respec-
tively, CL = 10 mM (solid line), 20 mM (dashed line), and 30 mM (dash–dotted
line). �C = 10 mM and σw = −0.01 C/m2.

Fig. 6. The concentration gradient of the ions K+ in the x-direction as a func-
tion of y at the cross section x = 0 when the electrolyte concentration in the left
reservoir is, respectively, CL = 10 mM (solid line), 20 mM (dashed line), and
30 mM (dash–dotted line). �C = 10 mM and σw = −0.01 C/m2.

To explain the spatial dependence of the induced electric
field and diffusioosmotic flow, Figs. 6 and 7 depict, respec-
tively, the concentration gradients of the ions K+ (c1) and the
ions Cl− (c2) in the x-direction when the surface charge den-
sity is σw = −0.01 C/m2. Due to the interaction between the
fixed negative surface charge along the wall of the nanochan-
nel and the ionic species in solution, the counterions (K+) are
enriched and the co-ions (Cl−) are depleted near the wall of
the nanochannel where the EDL is expected to be present. Note
that the local electroneutrality condition, z1c1 + z2c2 = 0, is
not valid, even along the centerline (y = 0) of the nanochan-
nel. Since the net charge density, ρe = F(z1c1 + z2c2), in the
centerline is not zero, the boundary condition in the bulk so-
Fig. 7. The concentration gradient of the ions Cl− in the x-direction as a func-
tion of y at the cross section x = 0 when the electrolyte concentration in the left
reservoir is, respectively, CL = 10 mM (solid line), 20 mM (dashed line), and
30 mM (dash–dotted line). �C = 10 mM and σw = −0.01 C/m2.

lution is different from that used during the derivation of the
Boltzmann distribution. Consequently, the Boltzmann distribu-
tion is therefore no longer valid [22, p. 15]. In the central region
of the channel, the variations of ∂c1(0, y)/∂x and ∂c2(0, y)/∂x

with y are not significant. In the region near the wall of the
channel, the concentration gradient of the K+ ions exponen-
tially increases as y approaches the negatively charged wall of
the channel. In contrast, the concentration gradient of the ions
Cl− exponentially decreases as y increases in the region near
the wall since the wall is negatively charged. As the concen-
tration CL increases while keeping the concentration gradient
and the surface charge density σw constant, the x-component
concentration gradient of the ions K+ increases in the central
region of the channel and slightly decreases in the region near
the wall (Fig. 6). However, as the concentration CL increases,
the x-component concentration gradient of the ions Cl− de-
creases in the central region and increases in the region near the
wall of the channel (Fig. 7). Fig. 8 depicts the local diffusive
flux density in the x-direction, JD = D2∂c2/∂x − D1∂c1/∂x,
as a function of y, and all other conditions are the same as
those in Fig. 6. In the central region of the channel, the dif-
fusive flux density is positive and decreases as the bulk con-
centration CL increases. The net diffusive flux density in the
x-direction becomes negative and its amplitude decreases as the
bulk concentration CL increases in the region near the wall of
the nanochannel. The spatially dependent diffusive flux density
induces spatially dependent velocity and electric field so that
the total current across the cross section x = 0 is zero. For a
relatively low bulk concentration CL, the x-component convec-
tive flux density, JC = ux(c1 − c2), and migrative flux density,
JM = −(z2

1D1c1 + z2
2D2c2)

F
RT

∂V
∂x

, are positive in the central
region of the channel, in which both the x-component velocity
and electric field are positive. In the region near the wall of the
channel, the x-component diffusive flux density (JD), the con-
vective flux density (JC), and the migrative flux density (JM)
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Fig. 8. The local diffusive flux density in the x-direction, JD = D2∂c2/∂x −
D1∂c1/∂x, as a function of y at the cross section x = 0 when the electrolyte
concentration in the left reservoir is, respectively, CL = 10 mM (solid line),
20 mM (dashed line), and 30 mM (dash–dotted line). �C = 10 mM and σw =
−0.01 C/m2.

are negative. The total current, I = F
∫ a

0 (JC + JD + JM) dy,
at the cross section x = 0 is zero. As the bulk concentration
CL increases, the magnitude of the diffusive flux density de-
creases (Fig. 8). As a result, lower flow velocity ux and electric
field in the x-direction are generated to induce lower convec-
tive and migrative currents in order to compensate for the net
diffusive current. When CL exceeds a certain threshold value,
the x-component velocity and thus JC become negative so as to
compensate for the net results of JD and JM in the nanochannel.

Fig. 9 depicts the cross-sectional average velocity, Uavg =
1
a

∫ a

0 ux(0, y) dy, as a function of the bulk electrolyte concen-
tration CL when �C = 10 mM. The small figure within Fig. 9
shows the details in the range of 20 � CL � 30 mM. The solid
and dashed lines in Fig. 9 represent, respectively, the cases of
σw = −0.01 and −0.005 C/m2. When the bulk electrolyte con-
centration is relatively low, the cross-sectional average velocity
or flow rate decreases as CL increases. The results imply that
one can enhance the flow by using a lower bulk electrolyte
concentration in the left reservoir while externally applying the
same concentration gradient. When the bulk concentration CL
is above a certain value, the average velocity or flow rate de-
creases only slightly as the bulk electrolyte concentration CL
increases. For a relatively high bulk concentration CL, the di-
rection of the net flow is reversed and the fluid is pumped from
the reservoir with a higher concentration to the other with a
lower concentration.

4.2. Effect of the concentration gradient

By keeping all conditions the same, one can vary the concen-
tration gradient by changing the concentration difference, �C,
or the bulk electrolyte concentration in the right reservoir, CR.
Fig. 10 depicts the x-component velocity profile, ux(0, y), as a
function of y at the cross section x = 0 when the surface charge
density σw = −0.01 C/m2, CL = 10 mM, and the concentra-
Fig. 9. The cross-sectional average velocity, Uavg = 1
a

∫ a
0 ux(0, y) dy, as a

function of the bulk electrolyte concentration CL when �C = 10 mM, σw =
−0.01 C/m2 (solid line), and σw = −0.005 C/m2 (dashed line).

tion difference �C = 10 mM (solid line), 20 mM (dashed line),
and 40 mM (dash–dotted line). The fluid moves in the direction
opposite to the externally applied concentration gradient in the
central region of the channel, and flows in the same direction as
that of the concentration gradient in the region near the wall of
the channel for various concentration gradients. For a relatively
small concentration gradient applied across the nanochannel,
the positive flow in the central region and the negative flow
in the region near the wall of the channel are enhanced as the
concentration gradient increases. The primary reason for the en-
hancement of the flow with the increase in the concentration
gradient is that a higher, negative diffusive current is induced
that requires increased positive migrative and convective cur-
rents to compensate for the diffusive current so that the net
current is zero in the system. When the concentration gradi-
ent is relatively large, as the concentration gradient increases
further, the central region with a positive flow velocity shrinks
and the region with a negative flow velocity expands. The flow
in the region with a negative flow velocity is enhanced and the
flow in the central region is reduced with the increase in the
concentration gradient. This behavior can be explained as fol-
lows. The net charge density, ρe = F(z1c1 + z2c2), decreases
in the central region, and increases in the region near the wall
of the channel with the increases in �C (results are not shown
here). The distributions of the electric field in the x-direction
under various concentration gradients are similar to that shown
in Fig. 4. The magnitudes of the positive electric field in the
central region and the negative electric field in the region near
the wall increase as �C increases (results are not shown here).
Therefore, the negative electrostatic force in the region near
the wall increases with the increase in �C. However, the pos-
itive electrostatic force in the central region slightly decreases
as �C increases due to the decrease in the net charge density.
Therefore, the negative flow in the region near the wall is en-
hanced and the positive flow in the central region is reduced.
Consequently, the cross-sectional average velocity decreases
with the increase in the concentration difference or concentra-
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Fig. 10. The x-component diffusioosmotic velocity as a function of y at the
cross section x = 0. CL = 10 mM, σw = −0.01 C/m2, and �C = 10 mM
(solid line), 20 mM (dashed line), and 40 mM (dash–dotted line).

tion gradient when the latter is relatively high. Fig. 11 depicts
the cross-sectional average velocity as a function of �C when
CL = 10 mM and the surface charge densities are, respectively,
σw = −0.01 C/m2 (solid line) and −0.005 C/m2 (dashed line).
When the bulk concentration difference or the axial concentra-
tion gradient is relatively small, the average velocity or flow rate
nonlinearly increases as �C increases. As the bulk electrolyte
concentration difference or the concentration gradient increases
further, the flow rate attains a maximum at the concentration
difference �Copt and then slightly decreases. The results im-
ply that there is an optimal concentration gradient to achieve
the maximum flow rate. The optimal concentration difference,
�Copt, depends on the level of the surface charge density along
the wall of the channel. The value of �Copt in a nanochannel
with a higher surface charge density is larger than that in a chan-
nel with a lower surface charge density.

4.3. Effect of the surface charge density along the
nanochannel’s wall

Fig. 9 depicts the cross-sectional average velocity as a func-
tion of the bulk concentration CL under two different surface
charge densities while keeping all other conditions the same.
For a relatively low CL, the flow rate is significantly enhanced
in a channel with a higher surface charge density. However,
when the bulk concentration CL is relatively high, the effect
of the surface charge density on the flow rate is not significant.
Fig. 11 depicts the cross-sectional average velocity as a func-
tion of the bulk concentration difference when CL = 10 mM,
σw = −0.01 C/m2 (solid line) and −0.005 C/m2 (dashed line).
Under all other identical conditions, the flow rate is higher in
a nanochannel carrying a higher surface charge density since
the interaction between the fixed surface charge along the wall
and the mobile charges in the electrolyte solution increases
as the surface charge density increases. As the fixed surface
charge density increases, more counterions (K+) are attracted
to the negatively charged wall, and more co-ions (Cl−) are re-
pelled from the negatively charged wall and are depleted from
Fig. 11. The cross-sectional average velocity as a function of the bulk concen-
tration difference, �C = CR − CL, when CL = 10 mM, σw = −0.01 C/m2

(solid line), and σw = −0.005 C/m2 (dashed line).

Fig. 12. The cross-sectional average velocity as a function of the surface charge
density when CL = 10 mM, �C = 20 mM (solid line), and �C = 10 mM
(dashed line).

the nanochannel. The diffusive current increases with the in-
crease in the fixed surface charge along the wall leading to
higher electric field and migrative current so as to compen-
sate for the diffusive current. Consequently, a higher flow rate
is induced as the magnitude of the surface charge density in-
creases. Fig. 12 depicts the cross-sectional average velocity as
a function of the fixed charge density along the wall of the
channel when CL = 10 mM, �C = 10 mM (dashed line), and
�C = 20 mM (solid line). Under all other identical conditions,
the cross-sectional average velocity increases with the magni-
tude of the surface charge density.

5. Conclusions

The diffusioosmotic flows in slit nanochannels connecting
reservoirs on either side have been studied theoretically with
the general multi-ion mass transport model taking into account
of the distortion and polarization of the EDLs adjacent to the
charged wall of the nanochannel. Despite the zero potential and
pressure differences externally applied between the reservoirs
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connected on either end of the nanochannel, a spatially depen-
dent electric field and a pressure gradient are induced by the
variations of the electrolyte concentration along the channel,
resulting in diffusioosmotic flow driven by the induced electric
field and the induced pressure gradient. The induced electric
field and pressure gradient are not uniform along the channel,
and therefore, the diffusioosmotic flow is not fully developed.
The major conclusions are

(i) When the bulk electrolyte concentration is relatively low,
the fluids in the central region and in the region near the
negatively charged wall flow, respectively, in the direc-
tion opposite to the applied concentration gradient and in
the same direction as that of the concentration gradient.
The net flow is in the direction of increasing electrolyte
concentration. The flow rate decreases as the bulk concen-
tration increases. This, however, is not true at high bulk
electrolyte concentrations. Once the bulk electrolyte con-
centration exceeds a certain value, the fluid in the entire
channel flows from one end with a higher electrolyte con-
centration to the other with a lower electrolyte concentra-
tion.

(ii) There is an optimal concentration gradient under which the
flow rate attains a maximum. Below this optimal value, as
the concentration gradient increases so does the net flow
rate. Further increases in the concentration gradient above
this critical value, the flow rate slightly decreases. The
optimal concentration gradient is, among other things, a
function of the surface charge density along the wall of
the nanochannel.

(iii) When the bulk electrolyte concentration is relatively small,
the flow rate increases with the increase in the magnitude
of the surface charge density. However, the effects of the
surface charge density on the flow rate are insignificant
when the bulk electrolyte concentration is relatively high.
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