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SPECIAL TOPIC — Heat conduction and its related interdisciplinary areas
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Thermal illusion aims to create fake thermal signals or hide the thermal target from the background thermal field
to mislead infrared observers, and illusion thermotics was proposed to regulate heat flux with artificially structured meta-
materials for thermal illusion. Most theoretical and experimental works on illusion thermotics focus on two-dimensional
materials, while heat transfer in real three-dimensional (3D) objects remains elusive, so the general 3D illusion thermotics
is urgently demanded. In this study, we propose a general method to design 3D thermal illusion metamaterials with varying
illusions at different sizes and positions. To validate the generality of the 3D method for thermal illusion metamaterials, we
realize thermal functionalities of thermal shifting, splitting, trapping, amplifying and compressing. In addition, we propose
a special way to simplify the design method under the condition that the size of illusion target is equal to the size of original
heat source. The 3D thermal illusion metamaterial paves a general way for illusion thermotics and triggers the exploration
of illusion metamaterials for more functionalities and applications.
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1. Introduction
Mirage is one of the most well-known optical illusions

in nature, which is formed by a curved light path in in-
homogeneous air with varying density. Inspired by natu-
ral optical illusions, people have designed numerical opti-
cal metamaterials[1–3] or metasurfaces to create artificial, spe-
cific, targeted optical illusions for conformal mapping,[4] shear
polaritons,[5] remote cooling,[6] and so on. Similarly, thermal
illusions[7–15] aim at creating fake thermal signals or hiding
the thermal target from the background thermal field to mis-
lead infrared (IR) observers for some military applications. As
all objects emit thermal energy externally, they can be eas-
ily observed by IR cameras even in gloomy and dark environ-
ment. According to the Stefan–Boltzmann’s law, the emitted
thermal energy is proportional to the fourth power of tem-
perature and surface emissivity, thus the temperature plays
a more important role than the surface emissivity in quan-
tifying the emitted thermal energy.[16–20] Obeying the sec-
ond law of thermodynamics, thermal energy flows from the
high-temperature region to the low-temperature region spon-
taneously, and manipulating the surface temperature field for
thermal illusion is rather challenging.[20–22] To achieve this,
Hu et al. proposed the heuristic and inspiring concept of il-
lusion thermotics,[8,13,14] which is the first to deal with heat
sources in a thermal field by splitting the heat sources and
simultaneously creating several separate thermal illusions to
camouflage the practical heat sources. However, previous
studies[8,9,14] only deal with 2D illusion thermotics, and more

general 3D cases have remained unresolved.
Note that both the 2D and 3D thermal illusion

metamaterial designs employ the general transforma-
tion thermotics,[23–34] whose essence lies in the invari-
ance of the thermal conduction differential equation af-
ter space transformation. In 3D space, thermal con-
duction is governed by ρ (x,y,z, t)c(x,y,z, t) ∂T

∂ t = ∇ ·
(k (x,y,z, t)∇T ). After space transformation (x,y,z) −→
(x′ (x,y,z) ,y′ (x,y,z) ,z′(x,y,z)), the governing equation
can be rewritten as ρ (x′,y′,z′, t)c(x′,y′,z′, t) ∂T

∂ t = ∇ ·(
𝐽k (x,y,z, t)𝐽−T/det(𝐽)∇T

)
, where the transformation Ja-

cobin matrix 𝐽 = ∂ (x′,y′,z′)/∂ (x,y,z). Compare the two
equations above and we can get the effective thermal conduc-
tivity tensor in 3D space as 𝑘′ = 𝐽k (x,y,z, t)𝐽−T/det(𝐽).
Following this design framework, we need to set up the de-
sign domain, the coordinates of the original heat sources and
the separate thermal illusions, and set up the space dividing
methods to apply the coordinate transformation method. To
design 2D thermal illusion metamaterials, Fig. 1(a) shows a
red-colored man (the real heat source) at the center of the
2D temperature field without any illusion device. And in
Fig. 1(b), when a 2D illusion device is applied, the red man is
expected to move to the location of the blue man (the virtual
heat source). Figures 1(c) and 1(d) extend this effect from 2D
to 3D. It is worth noting that the division of 2D space regions
doesn’t have a great impact on the position of illusion while in
a 3D illusion device, if the region is not elaborately divided,
the expected illusion target blue man won’t appear, instead
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the gray man at the wrong position appears. As shown in
Fig. 2(c), both the heat source (or the illusion target) and the
box outside are hexahedrons, and each of them has 8 vertices.
If we connect these vertices randomly, the regional division
will be messy and we can not get a general 3D illusion model.
Shifting from 2D to 3D is not just a simple addition of di-
mension but a complicated work. Therefore, it remains to be
studied how the 3D region should be divided and what diverse
functionalities it may present.

In this study, we propose a general design framework to
design 3D thermal illusion metamaterials to manipulate ther-
mal illusions at arbitrary size and position. To demonstrate the
generality, different thermal functionalities of thermal shifting,
splitting, trapping, amplifying and compressing have been re-
alized. A way to simplify our model is when the size of the
illusion target is equal to the size of the original heat source.
The 3D thermal illusion metamaterial offers a general way for
illusion thermotics and promotes the further exploration of il-
lusion metamaterials for more functionalities and practical ap-

plications.
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Fig. 1. Schematic of 2D and 3D thermal illusions. (a) 2D reference tem-
perature field. (b) 2D thermal illusion metadevice. (c) 3D reference tem-
perature field. (d) 3D thermal illusion metadevice.
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Fig. 2. Schematic of the 3D thermal illusion design. (a) Schematic of original heat source in the real space. (b) Schematic of thermal illusion
target in the virtual space. (c) Schematic of space divided into six hexahedral regions. (d) Schematic of hexahedral region 1 divided into five
tetrahedron regions.

2. Methods

As is shown in Figs. 2(a) and 2(b), located in the 3D

Cartesian coordinate system, the original hexahedral target

I′J′K′L′P′Q′R′S′ in the real space box, A′B′C′D′E′F′G′H′ is

expected to be transferred to the illusion hexahedral target box

IJKLPQRS in the virtual space ABCDEFGH. The coordinate
transformation is performed within the box, so the real box
and virtual box share the same dimension size of t ×w× h.
The original target and the illusion target separately have the
dimension sizes of l×m× n and ll×mm× nn. For simpli-
fied calculation, we put A′ and A at the origin of the real and
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virtual space coordinates, and we set A′B′ and AB as the pos-
itive direction of the x axis, A′C′ and AC as the positive di-
rection of the y axis, and A′E′ and AE as the positive direc-
tion of the z axis. Besides, in order to represent the move-
ment of objects in space, we set the coordinates of the point
I′ to be (p,q,r) and I to be (pp,qq,rr). To avoid confusion,
only the method of dividing regions in the real space is in-
troduced, while in the virtual space with the same dividing
principle we just need to remove the superscript of the real
space results. Broadly, we divide the region outside the origi-
nal target into six hexahedral regions, with each hexahedral re-
gion further divided into five tetrahedral regions. As is shown
in Fig. 2(c), the hexahedral regions above (E′F′G′H′P′Q′R′S′)
and below (A′B′C′D′I′J′K′L′) the target are named region 1′

and region 2′, respectively. The hexahedral regions in front
(B′C′G′F′J′K′R′Q′) and back (A′D′H′E′I′L′S′P′) of the target
are named region 3′ and region 4′. The hexahedral regions
on the right (D′C′G′H′L′K′R′S′) and left (A′B′F′E′I′J′Q′P′) of
the target are named region 5′ and region 6′. Taking region
1′ for example, we further divide the hexahedral region into
five tetrahedral regions, as is shown in Fig. 2(d), and they are
E′P′Q′S′, G′R′Q′S′, Q′E′G′F′, S′E′G′H′ and E′S′Q′G′, which
are named region 1.1′, region 1.2′, region 1.3′, region 1.4′ and
region 1.5′, respectively. The residual hexahedral regions are
divided in the same order.

According to the coordinate transformation relationship,
each point (x, y, z) in each tetrahedral region in the virtual
space can be mapped to new a one (x′, y′, z′) in the corre-
sponding tetrahedral region in the real space by the following
linear relationship: x′n

y′n
z′n

=

 αn βn
µn νn
λn σn

γn ϕn
εn θn
ρn ωn




xn
yn
zn
1

 , (1)

where the subscript n denotes the sequence number of the
tetrahedral region. Then the Jacobian matrix and the effective
conductivity tensor can be written as

𝐽n =
∂ (x′,y′,z′)
∂ (x,y,z)

=

 αn βn γn
µn νn εn
λn σn ρn

 , (2)

𝑘′n =

 k′xx k′xy k′xz
k′yz k′yy k′yz
k′zx k′zy k′zz

=
𝐽nk0𝐽

T
n

det(𝐽n)
, (3)

where k0 denotes the thermal conductivity of the virtual space.
Firstly we need to correspond each point in the real space

region to the virtual space region. As each point represents
three axial coordinates, then twelve equations can be formed
in each tetrahedral region, and twelve coefficients in Eq. (1)
can be solved, but we just need the left three columns of the
Jacobian matrix which are indicated in Eq. (2). Here we only

give the detailed derivation of thermal conductivity tensors of
region 1.

Table 1. Coefficients of tetrahedron region from region 1.1 to region 1.3.

Region 1.1 1.2 1.3

α
l
ll

l
ll 1

β 0 0 0

γ − ll p−l pp
ll(h−nn−rr) − ll p−l pp+lt−llt

ll(h−nn−rr) − l−ll+p−pp
h−nn−rr

ϕ
h(ll p−l pp)

ll(h−nn−rr) − h(l pp−ll p)+t(nn+rr)(ll−l)
ll(h−nn−rr)

h(l−ll+p−pp)
h−nn−rr

µ 0 0 0

υ
m

mm
m

mm 1

ε − mmq−mqq
mm(h−nn−rr) −mmq−mqq+mw−mmw

mm(h−nn−rr) − q−qq
h−nn−rr

θ
h(mmq−mqq)
mm(h−nn−rr) − h(mqq−mmq)+w(rr+nn)(mm−m)

mm(h−nn−rr)
h(q−qq)
h−nn−rr

λ 0 0 0

σ 0 0 0

ρ − −h+n+r
h−nn−rr − −h+n+r

h−nn−rr − −h+n+r
h−nn−rr

ω
h(n−nn+r−rr)

h−nn−rr −−hn+hnn−hr+hrr
h−nn−rr

h(n−nn+r−rr)
h−nn−rr

Table 2. Coefficients of tetrahedron regions 1.4 and 1.5.

Region 1.4 1.5

α 1 −−mmt−lw
mmt+llw

β 0 − (l−ll)t
mmt+llw

γ − p−pp
h−nn−rr − lmmt−llmmt+mmpt−mmppt+lqqt−llqqt+ll pw−l ppw

(h−nn−rr)(mmt+llw)

ϕ
h(p−pp)
h−nn−rr − h(−lmmt+llmmt−mmpt+mmppt−lqqt+llqqt−ll pw+l ppw)

(h−nn−rr)(mmt+llw)

µ 0 −mw−mmw
mmt+llw

υ 1 −−mt−llw
mmt+llw

ε −m−mm+q−qq
h−nn−rr −mmqt−mqqt+llmw−llmmw+mppw−mmppw+llqw−llqqw

(h−nn−rr)(mmt+llw)

θ
h(m−mm+q−qq)

h−nn−rr
h(mmqt−mqqt+llmw−llmmw+mppw−mmppw+llqw−llqqw)

(h−nn−rr)(mmt+llw)

λ 0 0

σ 0 0

ρ − −h+n+r
h−nn−rr − −h+n+r

h−nn−rr

ω
h(n−nn+r−rr)

h−nn−rr
h(n−nn+r−rr)

h−nn−rr

As is shown in Fig. 2(d), the coordinates that we need are
E′(0, 0, h), F′(t, 0, h), G′(t, w, h), H′(0, w, h), P′(p, q, r+ n),
Q′(p+ l, q, r+n), R′(p+ l, q+m, r+n), S′(p, q+m, r+n).
According to Eq. (1), we can set the following equations of
region 1.3: p+ l 0 t t

q 0 w 0
r+n h h h



=

 α1.3 β1.3 γ1.3 ϕ1.3
µ1.3 υ1.3 ε1.3 θ1.3
λ1.3 σ1.3 ρ1.3 ω1.3




pp+ ll 0 t t
qq 0 w 0

rr+nn h h h
1 1 1 1

 . (4)

Solving Eq. (4) and we can get the values of all the
linear coefficients as α = 1, β = 0, γ = − l−ll+p−pp

h−nn−rr , ϕ =
h(l−ll+p−pp)

h−nn−rr , µ = 0, ν = 1, ε =− q−qq
h−nn−rr , θ = h(q−qq)

h−nn−rr , λ = 0,

044401-3



Chin. Phys. B 33, 044401 (2024)

σ = 0, ρ = −−h+n+r
h−nn−rr , ω = h(n−nn+r−rr)

h−nn−rr . The other coeffi-
cients of each tetrahedron region are listed in Table 1 (includ-
ing regions 1.1, 1.2 and 1.3) and Table 2 (regions 1.4 and 1.5).

Then Jacobian matrix of region 1.3 can be obtained and
plugged it into Eq. (3), so that we can get the thermal conduc-
tivity tensor of region 1.3 as

𝑘1.3 =



−

(
1+

(l− ll + p− pp)2

(h−nn− rr)2

)
(h−nn− rr)

−h+n+ r
− (l− ll + p− pp)(q−qq)
(−h+n+ r)(h−nn− rr)

− l− ll + p− pp
h−nn− rr

− (l− ll + p− pp)(q−qq)
(−h+n+ r)(h−nn− rr)

−

(
1+

(q−qq)2

(h−nn− rr)2

)
(h−nn− rr)

−h+n+ r
− q−qq

h−nn− rr

− l− ll + p− pp
h−nn− rr

− q−qq
h−nn− rr

−−h+n+ r
h−nn− rr


. (5)

Following the same methods, we can derive all the thermal
conductivity tensors of all the tetrahedron regions.

3. Results and discussion
Following the above-mentioned methods, we get all the

3D conductivity tensors of the divided tetrahedral regions. Be-
fore further study, we find that when the heat source and illu-
sion target have the same size, i.e., l = ll, m = mm, n = nn,
five tetrahedral regions divided by the same hexahedral region
share the same linear coefficients. Take region 1 for exam-

ple, the coefficients of regions 1.1, 1.2, 1.3, 1.4 and 1.5 are
reduced as α = 1, β = 0, γ = p−pp

h−rr−nn , ϕ = h(p−pp)
h−rr−nn , µ = 0,

ν = 1, ε = q−qq
h−rr−nn , θ = h(q−qq)

h−rr−nn , λ = 0, σ = 0, ρ = h−r−n
h−rr−nn ,

ω = h(r−rr)
h−rr−nn , thereby the Jacobian matrix can be reduced to

𝐽1 =

 1 0 p−pp
h−rr−nn

0 1 q−qq
h−rr−nn

0 0 h−r−n
h−rr−nn

 , (6)

and thermal conductivity tensor becomes

𝑘1 =



−
(h−n− rr)

(
1+

(p− pp)2

(−h+n+ rr)2

)
−h+n+ r

− (p− pp)(q−qq)
(h−n− r)(−h+n+ rr)

p− pp
−h+n+ rr

− (p−pp)(q−qq)
(h−n− r)(−h+n+ rr)

−
(h−n−rr)

(
1+

(q−qq)2

(−h+n+ rr)2

)
−h+n+ r

q−qq
−h+n+ rr

p− pp
−h+n+ rr

q−qq
−h+n+ rr

−h+n+ r
−h+n+ rr


. (7)

In this way, we find a way to simplify the tetrahedral model
to the hexahedral model, which greatly reduces the amount of
computation. Therefore, in the following study without chang-
ing the size of the heat source, we adopt the hexahedral model
to show a clearer presentation of the temperature field.

In order to visually present the results, finite element
method (FEM) simulation is applied to validate our work. Rel-
evant parameters are set as follows: the dimension of the box is
length t = 100 mm, width w= 100 mm and height h = 20 mm.
Other variable parameters are given in the corresponding de-
scription. In order to be closer to the real environment, all
the boundaries are cooled by natural convection with a con-
vection coefficient of 5 W·m−2·K−1 and the ambient tempera-
ture is set as 293 K. The 3D temperature field of the reference

group shown in Fig. 3(a) has a uniform thermal conductivity,
with the temperature field distribution of its bottom surface
and top surface. We can easily identify the location of the
10 mm×10 mm×2 mm heat source from the top surface, and
that is why we manufacture thermal illusion to mislead and
hide the real heat source. Then, based on various means of
manufacturing illusions, a series of novel thermal functionali-
ties are designed and simulated.

Thermal shifter As we set the illusion target away from
the heat source, the temperature field acts like there is a real
object at the illusion position. Technically, as long as we
put the heat source and illusion target in different positions,
whether there are areas of overlap or not, we will make a ther-
mal illusion shifter. To make this effect more noticeable, we
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set the geometrical size of the original heat source and illusion
target as length l = ll = 10 mm, width m = mm = 10 mm,
and height n = nn = 2 mm. We set the coordinates of point
I′ as I′(45, 45, 0) and point I as I(80, 45, 15). As is shown
in Fig. 3(b), the heat source is shifted to the position of the
illusion target.

(a) (b) (c)

(d) (e) (f)

Min

Max

Bottom Top Bottom Top Bottom Top

Bottom Top Bottom Top Bottom Top

Fig. 3. FEM demonstration of thermal illusion. (a) Reference. (b) Ther-
mal shifter. (c) Thermal splitter. (d) Thermal trapper. (e) Thermal ampli-
fier. (f) Thermal compressor.

Thermal splitter Based on the thermal shifter, if we first
set the heat source to the side of the outer box and the illusion
target to the center of the box, then we compress the whole box
in half in terms of length. Finally, we join together two sym-
metrical in plane, so that two illusion targets are gained while
there exists only one heat source, as is shown in Fig. 3(c). The
heat source and illusion target share the same dimension size
of length l = 5 mm, width m = 10 mm and height n = 2 mm.
The length of each outer box is t = 50 mm, the coordinates of
point I′ to be I′(0, 45, 0) and point I to be I(27.5, 45, 15).

Thermal trapper Contrary to the design logic of the ther-
mal splitter, if we set the illusion target near the corner of
the outer box and splice four of them together, we can get
one illusion target while there exist four heat sources, as is
shown in Fig. 3(d). In our design, each outer box is com-
pressed to the size of 50 mm× 50 mm× 20 mm, while the
heat source and illusion target have the dimension size of
10 mm×10 mm×4 mm. The common side that all four outer
boxes intersect is the z axis. We set I′ to be I′(20, 20, 0) and I
to be I(1, 1, 15). Here we give the coordinates of the first tri-
grams, and the coordinates of the other trigrams are symmetric
or centrosymmetric.

Thermal amplifier and thermal compressor All the re-
searches above are carried out on the basis of the hexahedron-
region model, and when it comes to scaling the size of the
illusion target, we will have to adopt the tetrahedral-region
model. As is shown in Figs. 3(e) and 3(f), we manage to am-
plify and shrink the illusion target compared to the original
heat source, and we call them thermal amplifier and thermal
compressor, respectively. For thermal amplifier, the dimension

size of heat source is length l = 10 mm, width m = 10 mm and
height n = 2 mm, and the dimension size of illusion target is
length ll = 30 mm, width mm= 30 mm and height nn= 2 mm.
For thermal compressor, the dimension size of heat source is
length l = 30 mm, width m = 30 mm and height n = 2 mm,
and the dimension size of illusion target is length ll = 5 mm,
width mm = 5 mm and height nn = 2 mm.

It needs to be stressed that our general 3D thermal illusion
model is designed for a fixed heat source, both the location
and shape. A structure with a specific function will direct the
heat flux at the illusion target, which means that if we move,
enlarge or shrink the heat source, the trend of heat flow guid-
ance will not change. However, the desired effect can not be
achieved perfectly or proportionably. In addition, the achieve-
ment of thermal illusion does not depend on the location of the
observer, but observers at different locations may observe dif-
ferently. As shown in Fig. 3(b), observers above and below the
outside space box may observe different temperature fields.

In order to see the temperature distribution more accu-
rately, we intercept the plane where y = 50 mm of the refer-
ence group, thermal shifter group and thermal amplifier group.
z= 1 mm and z= 16 mm are the center plane of the heat source
and illusion target and we define dimensionless temperature as
T ∗= T−Tmin

Tmax−Tmin
. Figure 4(a) shows that heat flux is not selective

in direction and to break this kind of symmetry, as is shown in
Fig. 4(b), heat flux moves to the positive x-axis and peaks at
x = 80 mm, after which point its value starts to decline. The
temperature field fits perfectly with our designed illusion posi-
tion, which further verifies the reliability of our model. Com-
pared with Fig. 4(a), Fig. 4(c) shows that at z = 16 mm, there
has a wider area where temperature drops sharply, which in-
dicates that there exists a heat source bigger than that of the
original given one.

The variation of thermal conductivity tensor reflects the
essence of thermal conduction, so it is necessary to study
this constitutive relation. The distance between heat source
and illusion target is of vital importance, so we take the z-
coordinates of illusion target as argument, i.e., the value of
rr. Take thermal shifter group as an example, the three prin-
cipal components of thermal conductivity tensor (kxx, kyy and
kzz) of the six hexahedron regions change with rr are shown in
Figs. 5(a)–5(f). From the overall trend, only thermal conduc-
tivities of xx direction in regions 1 and 2 change significantly
with the change of rr, while the others are not sensitive to the
change of rr. In our design, illusion target moves only on seg-
ments (80, 45, 0) through (80, 45, 18). So when illusion target
is below or above the heat source, the heat flux is mainly reg-
ulated by the thermal conductivity in xx direction of region 2
or region 1, and the other regions only play an auxiliary role
in heat flux regulation.

044401-5



Chin. Phys. B 33, 044401 (2024)

(a) (b) (c)

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1.0

T
 ⇀

T
 ⇀

T
 ⇀

x (mm)

z=1 mm

z=16 mm

z=1 mm

z=16 mm
z=1 mm

z=16 mm

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1.0

x (mm)
0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1.0

x (mm)

kxx
kyy
kzz

    

.

.

.

.

rr/mm

k/
k 

(f)

Fig. 4. Temperature distribution. (a) Reference group. (b) Thermal shifter group. (c) Thermal amplifier group.
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Fig. 5. Three principal components of thermal conductivity tensors of different hexahedron regions on the height of illusion target. Panels
(a)–(f) represent regions 1–6, respectively.

4. Conclusion
We propose a general 3D thermal illusion model to

achieve functionalities of thermal shifting, splitting, trapping,
amplifying and compressing. A general design method has
been proposed to divide the design domain and derive the gen-
eral formula of thermal conductivity tensors of each region
under the theory of transformation thermotics. Based on this
model, a series of thermal functionalities have been realized.
In addition, we find a way to simplify our tetrahedron-region
model into a hexahedron-region model under the condition
that the size of illusion target equals the size of original heat
source. The achievement of thermal illusion does not depend
on the location of the observer, but observers at different loca-
tions may observe differently. As shown in Fig. 3, observers
above and below the outside space box share different tem-
perature fields. The 3D thermal illusion metamaterial paves
a general way for illusion thermotics and triggers the explo-
ration of illusion metamaterials for more functionalities and
applications.
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